Exercice 23 --- (id : 563)
Suites: Exercice 23
correction
UU la suite définie sur N\Bbb N par : Un=3n+2U_n=3n+2
1 Un+1UnU_{n+1}-U_n =(3(n+1)+2)(3n+2)=(3(n+1)+2)-(3n+2) =3n+3+23n2=3n+3+2-3n-2 =3=3 donc (Un)(U_n) est une suite arithmétique de raison 33 et de premier terme U0=3×0+2=2U_0=3\times0+2=2
2 Sn=U0+U1+...+Un1=(n1)0+12(U0+Un1)=n2(2+3(n1)+2)=n2(4+3n3)=n(3n+1)2=3n2+n2\begin{align*} S_n&=U_0+U_1+...+U_{n-1}\\ &=\dfrac{(n-1)-0+1}{2}(U_0+U_{n-1})\\ &=\dfrac{n}{2}(2+3(n-1)+2)\\ &=\dfrac{n}{2}(4+3n-3)\\ &=\dfrac{n(3n+1)}{2}\\ &=\dfrac{3n^2+n}{2} \end{align*}
3 Sn=40S_n=40     3n2+n2=40\iff \dfrac{3n^2+n}{2}=40     3n2+n=80\iff 3n^2+n=80     3n2+n80=0\iff 3n^2+n-80=0 or Δ=12+4×3×80=961\Delta=1^2+4\times3\times80=961 et Δ=31\sqrt \Delta=31 donc n=1+316n=\dfrac{-1+31}{6} ou n=1316n=\dfrac{-1-31}{6}     n=5\iff n=5 ou n=163Nn=-\dfrac{16}{3}\notin \Bbb N     n=5\iff \boxed{n=5}
4Trois termes consécutifs sont de la forme Un,  Un+1  et  Un+2U_n,\;U_{n+1}\;et\;U_{n+2}. Un+Un+1+Un+2=60    (3n+2)+(3(n+1)+2)+(3(n+2)+2)=60    3n+2+3n+3+2+3n+6+2=60    9n+15=60    9n=6015=45    n=459    n=5Donc    U5+U6+U7=60\begin{align*} &U_n+U_{n+1}+U_{n+2}=60\\ \iff &(3n+2)+(3(n+1)+2)+(3(n+2)+2)=60\\ \iff &3n+2+3n+3+2+3n+6+2=60\\ \iff &9n+15=60\\ \iff &9n=60-15=45\\ \iff &n=\dfrac{45}{9}\iff \boxed{n=5}\\ Donc\;\;&U_5+U_6+U_7=60 \end{align*}