U U U la suite définie sur
N \Bbb N N par :
U n = 3 n + 2 U_n=3n+2 U n = 3 n + 2
1
U n + 1 − U n U_{n+1}-U_n U n + 1 − U n = ( 3 ( n + 1 ) + 2 ) − ( 3 n + 2 ) =(3(n+1)+2)-(3n+2) = ( 3 ( n + 1 ) + 2 ) − ( 3 n + 2 ) = 3 n + 3 + 2 − 3 n − 2 =3n+3+2-3n-2 = 3 n + 3 + 2 − 3 n − 2 = 3 =3 = 3 donc
( U n ) (U_n) ( U n ) est une suite arithmétique de raison
3 3 3 et de premier terme
U 0 = 3 × 0 + 2 = 2 U_0=3\times0+2=2 U 0 = 3 × 0 + 2 = 2
2
S n = U 0 + U 1 + . . . + U n − 1 = ( n − 1 ) − 0 + 1 2 ( U 0 + U n − 1 ) = n 2 ( 2 + 3 ( n − 1 ) + 2 ) = n 2 ( 4 + 3 n − 3 ) = n ( 3 n + 1 ) 2 = 3 n 2 + n 2 \begin{align*}
S_n&=U_0+U_1+...+U_{n-1}\\
&=\dfrac{(n-1)-0+1}{2}(U_0+U_{n-1})\\
&=\dfrac{n}{2}(2+3(n-1)+2)\\
&=\dfrac{n}{2}(4+3n-3)\\
&=\dfrac{n(3n+1)}{2}\\
&=\dfrac{3n^2+n}{2}
\end{align*} S n = U 0 + U 1 + ... + U n − 1 = 2 ( n − 1 ) − 0 + 1 ( U 0 + U n − 1 ) = 2 n ( 2 + 3 ( n − 1 ) + 2 ) = 2 n ( 4 + 3 n − 3 ) = 2 n ( 3 n + 1 ) = 2 3 n 2 + n
3
S n = 40 S_n=40 S n = 40 ⟺ 3 n 2 + n 2 = 40 \iff \dfrac{3n^2+n}{2}=40 ⟺ 2 3 n 2 + n = 40 ⟺ 3 n 2 + n = 80 \iff 3n^2+n=80 ⟺ 3 n 2 + n = 80 ⟺ 3 n 2 + n − 80 = 0 \iff 3n^2+n-80=0 ⟺ 3 n 2 + n − 80 = 0 or
Δ = 1 2 + 4 × 3 × 80 = 961 \Delta=1^2+4\times3\times80=961 Δ = 1 2 + 4 × 3 × 80 = 961 et
Δ = 31 \sqrt \Delta=31 Δ = 31 donc
n = − 1 + 31 6 n=\dfrac{-1+31}{6} n = 6 − 1 + 31 ou
n = − 1 − 31 6 n=\dfrac{-1-31}{6} n = 6 − 1 − 31 ⟺ n = 5 \iff n=5 ⟺ n = 5 ou
n = − 16 3 ∉ N n=-\dfrac{16}{3}\notin \Bbb N n = − 3 16 ∈ / N ⟺ n = 5 \iff \boxed{n=5} ⟺ n = 5
4 Trois termes consécutifs sont de la forme
U n , U n + 1 e t U n + 2 U_n,\;U_{n+1}\;et\;U_{n+2} U n , U n + 1 e t U n + 2 .
U n + U n + 1 + U n + 2 = 60 ⟺ ( 3 n + 2 ) + ( 3 ( n + 1 ) + 2 ) + ( 3 ( n + 2 ) + 2 ) = 60 ⟺ 3 n + 2 + 3 n + 3 + 2 + 3 n + 6 + 2 = 60 ⟺ 9 n + 15 = 60 ⟺ 9 n = 60 − 15 = 45 ⟺ n = 45 9 ⟺ n = 5 D o n c U 5 + U 6 + U 7 = 60 \begin{align*}
&U_n+U_{n+1}+U_{n+2}=60\\
\iff &(3n+2)+(3(n+1)+2)+(3(n+2)+2)=60\\
\iff &3n+2+3n+3+2+3n+6+2=60\\
\iff &9n+15=60\\
\iff &9n=60-15=45\\
\iff &n=\dfrac{45}{9}\iff \boxed{n=5}\\
Donc\;\;&U_5+U_6+U_7=60
\end{align*} ⟺ ⟺ ⟺ ⟺ ⟺ Do n c U n + U n + 1 + U n + 2 = 60 ( 3 n + 2 ) + ( 3 ( n + 1 ) + 2 ) + ( 3 ( n + 2 ) + 2 ) = 60 3 n + 2 + 3 n + 3 + 2 + 3 n + 6 + 2 = 60 9 n + 15 = 60 9 n = 60 − 15 = 45 n = 9 45 ⟺ n = 5 U 5 + U 6 + U 7 = 60