SigMathS
Réponse 1:
$$\begin{align*}
&\sqrt{\sin^4 x+4\cos^2x}-\sqrt{\cos^4x+4\sin^2x}\\
&=\sqrt{\sin^4x+4(1-\sin^2x)}-\sqrt{\cos^4x+4(1-\cos^2x)}\\
&=\sqrt{\sin^4x-4\sin^2x+4}-\sqrt{\cos^4x-4\cos^2x+4}\\
&=\sqrt{(\sin^2x-2)^2}-\sqrt{(\cos^2x-2)^2}\\
&=\left|{\sin^2x-2}\right|-\left|{\cos^2x-2}\right|\\
&=(2-\sin^2x)-(2-\cos^2x)\\
&=\cos^2x-\sin^2x\\
&=\cos 2x
\end{align*}$$