Lycée Sbeïtla Devoir de contrôle N°3 Mathématiques

Prof: El béllili.* Med - Classes: 2ème Sciences

<u>Date</u>: 01/02/ 2016 - <u>Durée</u> : 1heure

Exercice n°1(4pts)

Les questions 1), 2),3) et 4) sont indépendantes

- 1) déterminer le reste de la division euclidienne de 29724583613 par 11
- 2) Déterminer le chiffre a telle que 582a soit divisible à la fois par 4 et 3.
- 3) Montrer que 3^{2016} 3^{2011} est divisible par 242.
- 4) Soit x = 4n + 1 et y = 5n + 2, où n est un entier naturel.

Soit d un diviseur commun de x et y.

- a- Montrer que d divise 20n + 5 et 20n + 8.
- b- En déduire que d divise 3.
- c- Déterminer les valeurs possibles de d.
- d- Montrer alors que 4001 et 5002 sont premier entre eux.

Exercice n°2(4pts)

- (U_n) est une suite arithmétique définie sur IN, telle que $U_0 = 3$ et $U_3 = 21$.
 - 1) a- Montrer que la raison de cette suite est r = 6.
 - b- Calculer U₂₀₁₆
 - 2) Soit la somme $S = U_0 + U_1 + \dots + U_n$; $n \in \mathbb{N}$.
 - a- Montrer que $S = 3(n+1)^2$.
 - b- Déterminer l'entier n pour que S = 4107

Exercice n°3(5 pts)

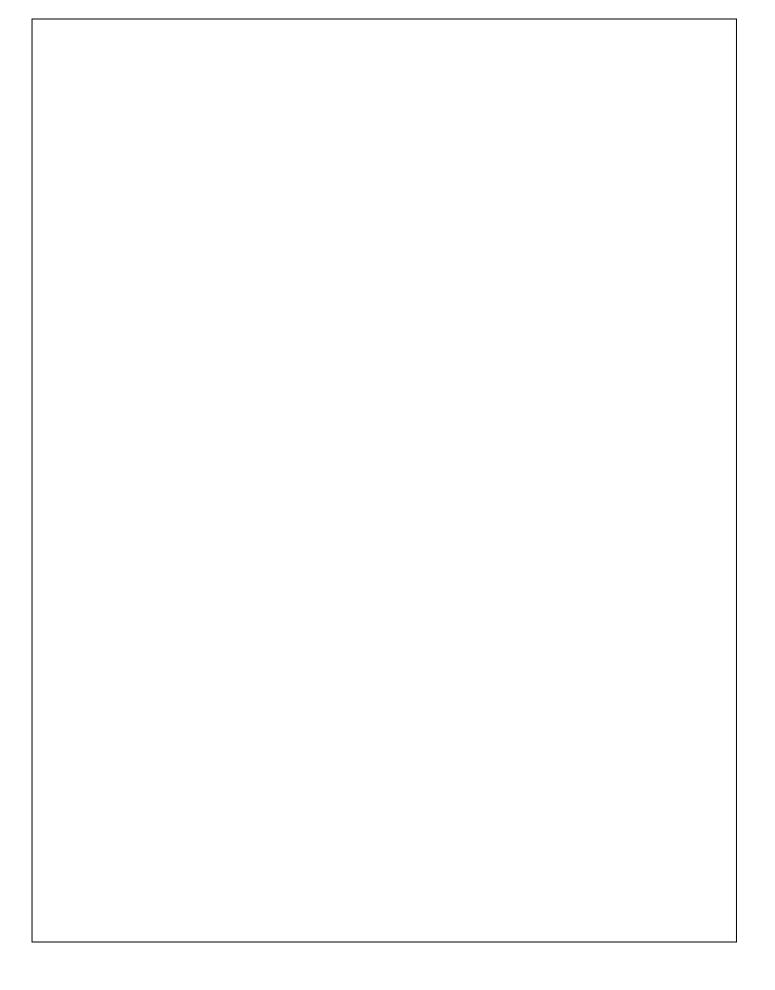
Soit (U_n) une suite définie sur IN par : $U_0 = 2$ et $U_{n+1} = 2U_n - 1$, pour tout $n \in IN$

- 1) a- Calculer U_1 et U_2 .
 - b- Montrer que la suite $\left(U_{_{n}}\right)$ est ni arithmétique ni géométrique.
- 2) On pose pour tout n \in IN : $V_n = U_n$ 1.
 - a- Calculer V₀.
 - b- Montrer que la suite $\left(V_{_{n}}\right)$ est une suite géométrique de raison : q = 2.
 - c- Calculer $V_{\scriptscriptstyle 6}\,$ puis déduire $U_{\scriptscriptstyle 6}.$

Exercice n°4(7 pts)

On considère un triangle ABC tel que BC = 6 cm. O le milieu de [BC] Soit h l'homothétie de centre A et de rapport $-\frac{1}{2}$.

- 1) Construire le point I = h(B).
- 2) La parallèle à (BC) passant par I coupe (AC) en J
 - a- Déterminer h(AC) et h(BC).
 - b- En déduire que h(C) = J.
 - c- Montrer alors que IJ = 3 cm
- 3) Soit K le milieu de [IJ]. Montrer que O, A et K sont alignés.
- 4) Soit (Γ) le cercle de centre O et passant par A. Construire (Γ ') limage de (Γ) par h.



Soit ABCD un carré.

- 1) Construire les points I et O tels que : $\overrightarrow{AB} = 4\overrightarrow{AI}$ et $\overrightarrow{DI} = -2\overrightarrow{OI}$
- 2) Soit h l'homothétie de centre O et tel que h(D) = I
 - a) Déterminer le rapport de h
 - b) Construire le point J = h(A) et prouver que (AB) \perp (IJ)
- 3) La droite Δ passant par J et parallèle à (AC) coupe (AB) en L
 - a) Déterminer h(AC) et h(DC)
 - b) Déduire que les points O, L et C sont alignés et que IJ = IL
- 4) Soit K le point tel que JILK est un carré. Montrer que h(B) = K

Soit ABC un triangle tel que BC = 8, AC = 7 et AB = 5 (unité = le cm).

Soient I le barycentre des points pondérés (A, 3) et (C, 1).

La parallèle à la droite (BC) en I coupe le segment [AB] en J.

On désigne par h l'homothétie de centre A et de rapport $\frac{1}{4}$.

- 1) a) Déterminer h (B) et h(C).
 - b) Montrer que h(BC) = (IJ) et que IJ = 2 cm.
- 2) Soit K = B * C et la droite (AK) coupe le segment [IJ] en E.
- a) Montrer que h(K) = E.
- b) Quelle est l'image du cercle (C) de diamètre [BC] par h?

On considère la suite U définie sur IN par : $\begin{cases} U_0=2\\ U_{n+1}=3\,U_n+2n+1\ pour,tout\ n\in IN \end{cases}$

- 1) a/ Calculer U_1 et U_2 .
 - b / Vérifier qua la suite U n'est ni arithmétique, ni géométrique.
- 2) On pose, pour tout $n \in IN$, $V_n = U_n + n + 1$.
 - a / Calculer V_0 et V_1 .
 - b/ Montrer que V est une suite géométrique de raison 3
 - c / Exprimer V_n puis U_n en fonction de n.
- 3) On pose, pour tout $n \ge 2$, $S_n = V_0 + V_1 + \cdots + V_n$ et $S'_n = U_0 + U_1 + \cdots + U_n$.

Exprimer S_n et S'_n en fonction de n:

Soit u la suite définie sur $\mathbb N$ par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{3} u_n + 1 \end{cases}$

- 1) a) Calculer u_1 et u_2 .
 - b) Déduire que la suite u est ni arithmétique ni géométrique.
- 2) soit ν la suite définie sur \mathbb{N} par : $\nu_n = u_n \frac{3}{2}$.
 - a) montrer que la suit v est géométrique et calculer sa raison et son premier terme.
 - b) Déduire v_n puis u_n en fonction de n .
- 3) a) calculer la somme $S=v_0+v_1+\cdots+v_{10}$.
 - **b)** Déduire la somme $S' = u_0 + u_1 + \cdots + u_{10}$

Soit la suite U définie par $U_0 = 2$ et $U_{n+1} = 2U_n - 1$ avec $n \in \square$

- 1/a) Calculer: U, et U2
 - b) La suite U est-elle une suite arithmétique ? Est-elle une suite géométrique ?
- 2/On pose $V_n = U_n 1$ pour $n \in \mathbb{D}$ Montrer que $V_{n+1} = 2V_n$. Quelle est la nature de la suite V.
- 3/a- Exprimer V_n en fonction de n . b-En déduire U_n en fonction de n. c- Calculer U_{10} .
- 4/ On pose : $S = V_0 + V_1 + V_2 + + V_{n-1}$. $S' = U_1 + U_2 + U_3 + + U_{n-1}$.

Exprimer S puis S' en fonction de n

I- Soit la suite U définie sur varphi par : $\begin{cases} U_0 = 0 \\ U_{n+1} = U_n + 2n + 3 \text{ pour tout } n \in varphi \end{cases}$

1) a- Calculer U₁ et U₂

b-la suite U est elle arithmétique ? Géométrique ?

- 2) On pose pour tout $n \in \mathbb{V} V_n = U_n n^2$
 - a- Calculer Vo et V1
 - b- Montrer que pour tout $n \in N$ on a $V_{n+1} = 2 + Vn$; Conclure
- 3) Déterminer V_n puis U_n en fonction de n
- 4) On pose $S_n = V_0 + V_1 + V_2 + \dots + V_{n-1}$; Calculer S_n en fonction de n

Les questions 1),2) et 3) sont indépendantes.

- Déterminer les chiffres a et b pour que le nombre 926ab soit divisible par 11 et par 25.
- 2) On pose : x = 5n + 2 et y = 3n 2. où $n \in IN$. a / Montrer que : si un entier d divise x et y, alors d divise 16. b / En déduire pgcd(2998,5002).
- 3) Soit p un entier naturel.
 - a/ Montrer que p(p+1) est divisible par 2.
 - b/ Montrer que : si n est un entier naturel \underline{impair} , alors $n^2 1$ est divisible par 8.

Soit n un entier naturel, on pose x = 6n + 15 et y = 2n + 3.

- 1) Soit d un entier naturel non nul. Vérifier que x 3y = 6 puis déduire que si d divise x et
- 2) divise aussi y alors d divise 6.
- 3) En déduire les valeurs possibles des diviseurs communs de x et y.
- 4) On pose $A = \frac{x}{y}$.
 - a) Vérifier que $A = 3 + \frac{6}{2n+3}$.
 - b) Déduire les valeurs de n pour que A soit un entier naturel.

- 1) Déterminer le reste de la division euclidienne par 11 de chacun des nombres suivants: 1708 ; 6192
- 2) Déterminer les chiffres a et b pour que le nombre 13a45b soit divisible par 3 et 4.
- 3) Montrer que $3^{2010} 3^{2008}$ est divisible par 3 et 8.
- 4) On considère le polynôme $P(x) = x^3 x^2 x 2$.
- a) Vérifier que $P(x) = (x 2)(x^2 + x + 1)$
- b) Résoudre dans \mathbb{R} l'équation P(x) = 0

Soit la suite U définie par $U_0 = 2$ et $U_{n+1} = 2U_n - 1$ avec $n \in \square$

- 1/a) Calculer: U, et U₂
 - b) La suite U est-elle une suite arithmétique ? Est-elle une suite géométrique ?
- 2/On pose $V_n = U_n 1$ pour $n \in \mathbb{D}$ Montrer que $V_{n+1} = 2V_n$. Quelle est la nature de la suite V.
- 3/a- Exprimer V_n en fonction de n . b-En déduire U_n en fonction de n, c- Calculer U_{10} .

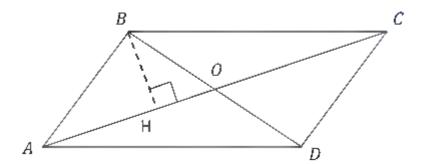
4/ On pose :
$$S = V_0 + V_1 + V_2 + \dots + V_{n-1}$$
.
 $S' = U_1 + U_2 + U_3 + \dots + U_{n-1}$.

Exprimer S puis S' en fonction de n

Dans la figure ci-dessous, ABCD est un parallélogramme de centre O

et H est le projeté orthogonal du point B sur la droite (AC) .

- 1) Construire les points suivants :
- a) A' le symétrique du point B par rapport à A
- b) B' le symétrique du point B par rapport à la droite $(A\mathcal{C})$
- 2) Soit h l'homothétie de centre B et de rapport 2
- a) Déterminer h(A), h(H) et h(O). Justifier votre réponse.
- b) Construire le point C' = h(C)
- c) Montrer que les points A', B', D et C' sont alignés.
- d) Montre que l'aire du parallélogramme ABCD est la moitié de l'aire du triangle $BA^{'}C'$.



Soit u_n une suite réelle définie sur IN par: $\begin{cases} u_0 = -3 \\ u_{n+1} = 3u_n + 8 \end{cases} \quad n \in \mathbb{N}$

- 1) a) Calculer u₁ et u₂
 - b) Déduire que u_n ni suite arithmétique ni suite géometrique
- 2) Soit v_n une suite définie sur IN par $v_n=u_n+4$
- a) Montrer que v_n est une suite géometrique dont on précisera la raison et le premier terme
 - b) Ecriver v_n puis u_n en fonction de n
- 3) Soit w_n une suite définie sur IN par $w_n = v_n + 3n 1 3^n$

Montrer que wn est une suite arithmétique

4)Soit $S=v_0+v_1+v_2+....v_n$ et $S'=w_0+w_1+w_2+.....w_n$. Ecriver S et S' en fonction de n