Mathématiques

4^{ème} Math

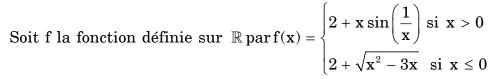
Devoir de contrôle N°01

Durée: 2 heures

Professeur

Elabidi Zahi

Exercice 01: (6 points)



On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$

- 1) Montrer que $\lim_{x \to +\infty} f(x) = 3$ Interpréter graphiquement le résultat
- 2) a) Montrer que pour tout x > 0, $2 x \le f(x) \le x + 2$
 - b) Déduire $\lim_{x\to 0^+} f(x)$ et que f est continue en 0
 - c) Calculer $\lim_{x\to 0} f\left(\frac{1-\cos x}{x}\right)$
- 3) a) Montrer que l'équation $f(x) = \frac{5}{2}$ admet au moins une solution α dans $\left[\frac{2}{3\pi}; \frac{2}{\pi}\right]$
 - b) Montrer que $\cos\left(\frac{1}{\alpha}\right) = -\frac{\sqrt{4\alpha^2 1}}{2\alpha}$
- 4) Montrer que la droite d'équation $y=-x+\frac{7}{2}$ est une asymptote oblique à par $\mathscr E$ au voisinage de $-\infty$
- 5) Soit g la restriction de f sur $]-\infty;0]$

On désigne par h la fonction définie sur $\left[0; \frac{\pi}{2}\right[par \ h(x) = g(-\tan x)$

Montrer que h est continue sur $\left[0; \frac{\pi}{2}\right]$

Exercice 02: (7 points)

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}; \overrightarrow{v})$ Soient A et B les points d'affixes respectives 2 et 4 et θ un réel de $]0; \pi[$ On considère l'équation $(E_{\theta}): z^2 - 4z + 4(1 - e^{2i\theta}) = 0$

- 1) Résoudre, dans $\mathbb C$, l'équation (E_θ) : $z^2-4z+4\left(1-e^{2\mathrm{i}\theta}\right)=0$
- 2) Soient les points $\,M\,$ et $\,M\,^{\dagger}\,$ d'affixes respectives $\,2\left(1+e^{i\theta}\right)$ et $\,2\left(1-e^{i\theta}\right)$
 - $a) \ \ V\acute{e}rifier \ que \ \ 1+e^{i\theta}=2\cos\biggl(\frac{\theta}{2}\biggr)e^{i\frac{\theta}{2}} \ \ et \ \ que \ \ 1-e^{i\theta}=-2i\sin\biggl(\frac{\theta}{2}\biggr)e^{i\frac{\theta}{2}}$
 - b) En déduire que le triangle OMM' est rectangle en O
 - c) Montrer que l'aire du triangle $\mbox{ OMM}\,{}^{\mbox{\tiny !}}$ est égale à $4\sin\theta$

- 3) On désigne par E l'ensemble décrit par M et par E'l'ensemble décrit par M'lorsque θ décrit $0; \pi$
 - a) Déterminer et construire l'ensemble E
 - b) Montrer que M et M' sont symétriques par rapport au point A
 - c) Construire alors l'ensemble E'
- 4) Soit N le point d'affixe $(2+2i)(1+e^{i\theta})$
 - a) Montrer que le triangle OMN est rectangle, isocèle en M et direct
 - b) En déduire une construction du point N à partir de M
- 5) a) Montrer que OM'MN est un trapèze
 - b) Montrer que l'aire de ce trapèze est égale $4\left(1+\sqrt{2}\cos\left(\theta-\frac{\pi}{4}\right)\right)$
 - c) Déterminer la valeur de θ pour que l'aire du trapèze soit maximale

 $Soit~(u_{_{n}})\,la~suite~d\'efinie~sur~\mathbb{N}~par~\begin{cases} u_{_{0}}=3\\ \\ u_{_{n+1}}=\frac{u_{_{n}}^{2}-2u_{_{n}}+4}{u_{_{n}}}~,\forall n\in\mathbb{N} \end{cases}$

- 1) a) Montrer que pour tout $\,n\in\mathbb{N}$, $u_{_{n}}>2\,$
 - b) Montrer que la suite(u_n) est décroissante
 - c) En déduire que la suite(u_n) est convergente est déterminer sa limite
- 2) a) Montrer que pour tout $n\in\mathbb{N}$, $u_{_{n+1}}-2\leq\frac{1}{_{\mathbf{Q}}}\big(u_{_{n}}-2\big)$
 - b) En déduire que pour tout $n\in\mathbb{N}$, $u_{_n}-2\leq \left(\frac{1}{3}\right)^{\!n}$. Retrouver alors $\lim_{_{n\to+\infty}}u_{_n}$
- 3) Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^{n-1} u_k$ et $v_n = \frac{S_n}{n}$
 - $\text{a) Montrer que pour tout } n \in \mathbb{N}^*, \quad 2n < S_n \leq 2n + \frac{3}{2} \bigg(1 \bigg(\frac{1}{3} \bigg)^n \ \bigg).$
 - b) En déduire $\lim_{n\to +\infty} S_n$ et $\lim_{n\to +\infty} v_n$
- 4) a) Montrer par récurrence que pour tout entier $n\geq 2$, $\,3^{\rm n}\geq n^2$
 - b) Pour tout $n \in \mathbb{N}^*$, on pose $w_n = \frac{1}{n(u_n 2)}$

Montrer que pour tout entier $n \ge 2$, $w_n \ge n$. En déduire $\lim w_n$

- 5) Pour tout $n \in \mathbb{N}^*$, on pose $T_n = \sqrt{2} + \frac{1}{n} \sum_{i=1}^{n} (-1)^k (u_n 2)$
 - $a) \ \ \text{V\'erifier que pour tout} \ \ n \in \mathbb{N}^*, \left|T_n \sqrt{2}\right| \leq \frac{1}{2n} \Bigg(1 \left(\frac{1}{3}\right)^n \Bigg)$
 - b) En déduire que la suite (T_n) est convergente et préciser sa limite

2