Lycée de Sbeïtla

Mathématiques

4ème Maths

SÉRIE D'EXERCICES

Thème : Intégrale

A - S : 2016 - 2017

Professeur:

Elabidi Zahi

Exercice 01

Soit f la fonction définie sur [-1;0] par : $f(x) = \sqrt{1 + \sqrt{1 + x}} + \sqrt{1 - \sqrt{1 + x}}$

- 1) Montrer que f réalise une bijection de [-1;0] sur $\left\lceil \sqrt{2};2\right\rceil$
- 2) Soit g la bijection réciproque de f , montrer que $\forall x \in \left[\sqrt{2}; 2\right], g(x) = -\frac{1}{4} \left(x^2 2\right)^2$
- 3) Soit F une primitive de f sur [-1;0]. Montrer que la fonction $H = F \circ g$ est une primitive sur $\lceil \sqrt{2};2 \rceil$ de la fonction $h: x \mapsto x g'(x)$
- 4) Soit l'intégrale $I = \int_{-1}^{0} f(x) dx$
 - a) Montrer que $I = \int_{2}^{\sqrt{2}} x g'(x) dx$. En déduire que $I = 2 \int_{2}^{\sqrt{2}} g(x) dx$
 - b) Calculer la valeur de I

Exercice 02

Le plan est muni d'un repère orthonormé (O,i,j)

Soit f la fonction définie par $f(x) = \frac{x^2}{6}\sqrt{2x+5}$. On désigne par (C) sa courbe représentative

- 1) a) Etudier les variations de f
 - b) Montrer que la droite Δ : y = x coupe (C) en deux points dont on précisera les abscisses
- 2) a) Soit g la restriction de f à \mathbb{R}_+ . Montrer que g réalise une bijection de \mathbb{R}_+ sur \mathbb{R}_+
 - b) Tracer la courbe(C) et la courbe(C') de g-1
- 3) a) Calculer à l'aide d'une intégration par partie l'intégrale $I = \int_0^2 x^2 \sqrt{2x+5} dx$
 - b) En déduire l'aire de la partie du plan limitée par les courbes (C) et (C')

Exercice 03

Le plan est muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$

- 1) Soit(C) la courbe d'équation $y = \sqrt{x(2-x)}$. Prouver que(C) est un demi-cercle puis la tracer
- 2) Soit f la fonction définie $\sup[0;2]$ par $f(x) = \int_0^x \sqrt{t(2-t)} dt$ et soit Γ sa courbe représentative
 - a) Interpréter graphiquement le réel f(x). En déduire les valeurs de f(1) et de f(2)
 - b) Dresser le tableau de variation de f
 - c) Montrer que la courbe Γ admet un point d'inflexion I que l'on précisera
 - d) Montrer que I est un centre de symétrie de Γ . Tracer la courbe Γ
- 3) Soit g la fonction définie sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ par $g(x) = \int_0^{1+\sin x} \sqrt{t(2-t)} \, dt$
 - a) Montrer que g est dérivable $\sup \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ et calculer g '(x)
 - b) En déduire que pour tout x de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, $g(x) = \frac{1}{2}x + \frac{1}{4}\sin(2x) + \frac{\pi}{4}$

4) Soit A l'aire de la partie du plan limitée par la courbe Γ , l'axe des abscisses et les droites d'équations x=0 et x=2

$$V\acute{e}rifier\ que\ A=\int_0^2 f(x)dx\ .$$

On admet que
$$\int_0^2 f(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \cdot f(1 + \sin x) dx$$
 Déterminer la valeur de A

Exercice 04

Soit n un entier naturel non nul. On pose $I_n = \int_0^1 (1 - x^2)^n dx$

1) Vérifier que
$$I_1 = \frac{2}{3}$$
 et que $I_2 = \frac{2}{3} \cdot \frac{4}{5}$

- 2) Vérifier que $I_n I_{n+1} = \int_0^1 x^2 (1 x^2)^n dx$
- 3) a) Au moyen d'une intégration par parties, montrer que $I_{n+1} = \frac{2n+2}{2n+3}I_n$
 - b) Montrer alors, par récurrence, que $\forall n \in \mathbb{N}^*$, $I_n = \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \dots \cdot \frac{2n}{2n+1}$
- 4) Soient F et G les fonctions définies sur \mathbb{R} par $F(x) = \int_0^{\sin x} (1 t^2)^n dt$ et $G(x) = \int_0^x \cos^{2n+1} t dt$
 - a) Montrer que F et G sont dérivables sur \mathbb{R} et déterminer F'(x) et G'(x)
 - b) En déduire que pour tout réel x, F(x) = G(x)
 - c) En déduire, en fonction de n, alors la valeur de $\int_0^{\frac{\pi}{2}} \cos^{2n+1}t \, dt$, où $n \in \mathbb{N}^*$