Epreuve:

Mathématiques

Durée : 2 heures

LYCÉE DE SBEÏTLA DEVOIR DE SYNTHÈSE Nº2

Classes: 2ème Technologie de l'informatique

Année scolaire : 2015 // 2016

Professeur:

Elabidi Zahi

Exercice 01: (3 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. L'élève indiquera sur sa copie le numéro de la question et la lettre correspondante à la réponse choisie. Aucune justification n'est demandée.

Le plan est rapporté à un repère orthonormé : $(0, \vec{i}, \vec{j})$

N°	Questions	Réponses		
		a	b	c
1	L'hyperbole d'équation $y = \frac{3x+1}{4x-2}$ est de centre :	$\Omega\!\!\left(\!rac{1}{2};\!rac{3}{4} ight)$	$\Omega\!\left(rac{1}{2};rac{4}{3} ight)$	$\Omegaigg(rac{1}{2}; -rac{1}{2}igg)$
2	La parabole d'équation $y = 4x^2 + 8x + 1$ est de sommet :	S(0;1)	S(-1;-3)	S(1;13)
3	Soit Δ la droite d'équation $4x - 3y + 2 = 0$ Le coefficient directeur de Δ est :	4	$\frac{4}{3}$	$\frac{2}{3}$

Exercice 02: (8 points)

Soit f la fonction définie par $f(x) = \frac{3x-1}{x-2}$

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) a) Déterminer l'ensemble de définition D de f.
 - b) Vérifier que pour tout réel x de D; $f(x) = 3 + \frac{5}{x-2}$.
 - c) Que peut on dire de f(x) quand x tend vers $+\infty$ ou $-\infty$?
- 2) a) Montrer que f est décroissante sur chacun des intervalles] $-\infty$;2[et]2;+ ∞ [.
 - b) Déterminer la nature de (C) puis la tracer
 - c) Résoudre graphiquement l'inéquation $f(x) \ge -2$.
- 3) Soit g la fonction définie par : $g(x) = \frac{3|x|-1}{|x|-2}$
 - a) Déterminer l'ensemble de définition de g
 - b) Montrer que g est paire.

- c) Montrer que pour tout réel $x \in [0; +\infty[\setminus \{2\}, g(x) = f(x)]$.
- d) Tracer alors la courbe (C') de g dans le même repère que (C)

Exercice 03: (3 points)

Pour tout $x \in [0; \pi]$, on considère l'expression $f(x) = \sin^2 x - \cos^2 x$.

- 1) Montrer que: $f(x) = 2\sin^2 x 1$.
- 2) Résoudre dans $[0;\pi]$, l'équation f(x) = 0

Exercice 04: (6 points)

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

On considère les points A(-2;1), B(1;2) et C(-3;3)

- 1) a) Montrer qu'une équation cartésienne de (BC) est -x-4y+9=0
 - b) Calculer la distance du point A à la droite (BC)
 - c) En déduire l'aire du triangle ABC
- $2) \ Soit \ l'ensemble \ \zeta = \left\{ M(x,y) \ tels \ que \colon x^2 + y^2 + 4x 2y = 0 \right\}.$
 - a) Montrer que ζ est le cercle de centre A et de rayon $\sqrt{5}$.
 - b) Vérifier que le point C appartient à ζ
 - c) Déterminer une équation cartésienne de la droite Δ tangente à ζ au point C.
 - d) Montrer que les droites Δ et (OB) sont sécantes en un point M que l'on déterminera

Que Dieu soit à l'aide de tous

