

EXERCICE 01 (6 points)

- 1) Résoudre dans [0;1] l'équation : $2x^2 5x + 2 = 0$
- 2) On considère l'expression $f(x) = -2\cos^2 x 5\sin x + 4$ où x est un réel de $[0;\pi]$
 - a) Calculer $f\left(\frac{\pi}{6}\right)$; $f\left(\frac{\pi}{2}\right)$
 - b) Montrer que pour tout réel x de $[0;\pi]$, $f(x) = 2\sin^2 x 5\sin x + 2$
 - c) Résoudre alors, dans $[0;\pi]$, l'équation : f(x) = 0

EXERCICE 02 (9 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 4x + 2$ et soit (C) sa courbe représentative dans un repère orthogonal $(O, \overrightarrow{i}, \overrightarrow{j})$

- 1) a) Quelle est la nature de (C) ?
 - b) Déterminer les coordonnées du sommet S et une équation de l'axe Δ de (C)
 - c) Tracer (C)
- 2) Tracer dans le même repère la droite D: y = -x 2
- 3) a) Résoudre graphiquement l'équation f(x) = -x 2 puis l'inéquation $f(x) \ge -x 2$
 - b) Retrouver par le calcul, les résultats de la question précédente

EXERCICE 03 (5 points)

Dans l'annexe ci-jointe (page 2) on a représenté, dans un repère orthogonal (O, \vec{i}, \vec{j}) , la courbe (Γ) de la fonction f définie sur $[-2; +\infty[$ par $f(x) = \sqrt{x+2}$

- 1) Décrire le sens de variation de f sur $[-2;+\infty]$
- 2) Soit g la fonction définie sur \mathbb{R} par $g(x) = \sqrt{|x|+2}$
 - a) Montrer que g est paire
 - b) Montrer que g et f ont la même courbe sur [0;+∞[
 - c) Tracer dans le même repère la courbe $(\Gamma')\,$ de g

Annexe à rendre avec la copie

