Mathématiques

4^{ème} Maths

Lycée secondaire de Sbeïtla Série d'exercices

Thème: Coniques

Année scolaire : 2014 // 2015

Professeur:

Elabidi Zahi

Exercice 01

Dans le plan est rapporté à un repère orthonormé direct $(O; \vec{i}; \vec{j})$, on considère la courbe (P) d'équation $2x + 3y^2 + 4y - 1 = 0$

- 1) a) Montrer que (P) est une parabole dont on déterminera le sommet S, le foyer F et la directrice D
 - b) Construire (P)
- 2) Soit M_0 le point de (P) d'abscisse (-3) et d'ordonnée $y_0 \ge 0$
 - a) Déterminer une équation cartésienne de la tangente (T) à (P) en M_0
 - b) Donner une équation de la perpendiculaire (N) à (T) en M_0
- 3) (T) coupe l'axe focal Δ de (P) au point I et (N) coupe Δ en J
 - a) Montrer que F est le milieu du segment [IJ]
 - b) Soit K le projeté orthogonal de $M_0 \, sur \, \Delta$. Montrer que $JK = \frac{1}{3}$

Exercice 02

- 1) Soit D une droite fixe du plan et F un point non situé sur D. La perpendiculaire à D en un point variable H de D coupe la perpendiculaire menée de F à (FH) en N Soit M le milieu de [HN]. Montrer que M vari sur une parabole (P) dont on précisera le foyer et la directrice
- 2) On rapporte le plan à un repère orthonormé $(0,\vec{i},\vec{j})$ et on donne $F(\frac{3}{2};-1)$ et D: x=-1
 - a) Montrer que la parabole (P) a pour équation : $y^2 5x + 2y + \frac{9}{4} = 0$
 - b) Préciser le sommet de (P) puis la tracer
- 3) a) Vérifier que le point $A\left(\frac{21}{20};1\right)$ appartient à (P) puis écrire une équation de la tangente T à (P) en A
 - b) La droite T coupe D en K. Montrer que le triangle AFK est rectangle en F

Exercice 03

Dans le plan rapporté à un repère orthonormé direct $(O;\vec{i};\vec{j})$, on considère la parabole

 $P \text{ d'équation } y^2 = 2x \text{ et on désigne par } M \text{ et } M' \text{ les points de coordonnées respectives } \left(\frac{t^2}{2}; t\right)$

$$\operatorname{et}\left(\frac{1}{2t^2}; -\frac{1}{t}\right) \operatorname{où} \ t \operatorname{est} \operatorname{un} \operatorname{r\acute{e}el} \operatorname{non} \operatorname{nul}$$

- 1) a) Déterminer les coordonnées du foyer F de P $\,$ et l'équation de sa directrice D $\,$
 - b) Tracer P

- c) Vérifier que les points M et M' appartienne à P
- 2) On désigne par T et T'les tangentes à P respectivement en M et M'
 - a) Montrer que les points M, F et M'sont alignés
 - b) Ecrire les équations des tangentes T et T'. En déduire que $T \perp T'$
 - c) On désigne par H l'intersection de T et T'. Déterminer l'ensemble décrit par H quand t décrit \mathbb{R}^*

Exercice 04

Dans le plan muni d'un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$; on considère la courbe ζ d'équation: $3x^2 + 4y^2 + 6x - 9 = 0$

- 1) Montrer que ζ est une ellipse dont on précisera l'excentricité e, le centre Ω , les foyers F et F'et les directrices associées D et D'
- 2) a) Déterminer les points d'intersection de ζ et l'axe des ordonnées (On désigne par M_1 le point d'ordonnée positive)
 - b) Déterminer les sommets de ζ puis la tracer
- 3) a) Ecrire une équation cartésienne de la tangente (T) à ζ en M_1
 - b) Soient H et H'les projetés orthogonaux respectifs de ${\bf F}$ et F'sur (T) Montrer que FH.F'H' = 3

Exercice 05

Soit f la fonction définie sur [0;2] par $f(x) = 2\sqrt{2x-x^2}$ et soit $\mathscr E$ sa courbe représentative dans un plan rapporté à un repère orthonormé $R = (0;\vec{i};\vec{j})$

- 1) a) Montrer que f est dérivable sur 0;2 et calculer f'(x) pour tout x de 0;2
 - b) Dresser le tableau de variations de f puis tracer $\mathscr C$
 - c) On suppose que l'œuf d'un oiseau a la forme d'un solide de révolution obtenu par rotation de la courbe \mathscr{C} autour de l'axe $(0; \vec{i})$

Calculer le volume % en unité de volume, de cet œuf

- 2) Soit \mathscr{C} 'le symétrique de \mathscr{C} par rapport à la droite $(0; \vec{i})$, on note $\Gamma = \mathscr{C} \cup \mathscr{C}$ '
 - a) Montrer que Γ a pour équation $(x-1)^2 + \frac{y^2}{4} = 1$
 - b) Montrer que Γ est une ellipse dont on précisera le centre Ω , l'excentricité e et les foyers Γ et Γ
 - c) En déduire une équation de la tangente (T) à Γ en son point M_0 d'abscisse $\frac{3}{2}$ et d'ordonnée y_0 positive
 - d) On note H et H' les projetés orthogonaux respectifs des foyers F et F'sur (T) Montrer que FH.F'H' = 1
- 3) On désigne par F la fonction définie sur $\left[0;\pi\right]$ par $\left[0;\pi\right]$ par $\left[0;\pi\right]$
 - a) Montrer que F est dérivable sur $\left[0;\pi\right]$ et que pour tout x de $\left[0;\pi\right]$, F'(x) = $-2\sin^2 x$
 - b) Calculer $F(\pi)$ et en déduire l'expression de F(x) pour tout x de $\left[0;\pi\right]$

- c) Calculer l'aire ${\mathscr A},$ en unité d'aire de l'intérieur de l'ellipse Γ
- $4) \ On \ pose: \ u_{_{0}}=2\int_{_{0}}^{^{2}}\sqrt{2x-x^{^{2}}} \ dx \ \ et \ pour \ tout \ \ n\in\mathbb{N}^{*}, \ \ u_{_{n}}=2\int_{_{0}}^{^{2}}x^{^{n}}\sqrt{2x-x^{^{2}}} \ dx$
 - a) Calculer $\mathbf{u_0} \mathbf{u_1}$,
en déduire $\mathbf{u_1}$
 - b) Vérifier que $\forall n \in \mathbb{N}^*$, $u_n u_{n+1} = \int_0^2 x^n (2-2x) \sqrt{2x-x^2} \, dx$ puis montrer, à l'aide d'une intégration par parties que $u_{n+1} = \left(\frac{2n+3}{n+3}\right) u_n$
 - c) En déduire l'intégrale $I = \int_0^2 (x^2 2x + 3) \sqrt{2x x^2} \, dx$
 - d) Montrer que $(u_{_n})$ est croissante .En déduire que pour tout $n\in\mathbb{N}$, $u_{_n}\geq \frac{1}{\pi}$
 - e) Montrer que si la suite (u_n) converge vers l alors l = 0. Conclure

Exercice 06 (Bac Tunisien 1998)

Soit u un nombre complexe et soit l'équation $(E_u): z^2 - (2u - i\bar{u})z - 2iu\bar{u} = 0$ où \bar{u} est le nombre complexe conjuguée de u

- 1) Résoudre dans C l'équation (E_n).On désigne par z'et z'' les solutions de cette équation
- 2) On rapporte le plan à un repère orthonormé direct (O; i; j) et on désigne par A,M, M'et M" les points d'affixes respectives 2i, u, z' et z"

Soit *H* l'ensemble des points M tels que les points A, M'et M' soient alignés

- a) Trouver une équation cartésienne de ${\mathcal H}$
- b) Montrer que l'ensemble ${\mathscr H}$ est une hyperbole dont on précisera le centre, les sommets, et les asymptotes
- c) Vérifier que ${\mathcal H}$ passe par le point O et donner une équation cartésienne de la tangente à ${\mathcal H}$ en O
- d) Tracer \mathcal{H}