4ème Maths

SÉRIE D'EXERCICES

Thème : Similitudes

Professeur:

Elabidi Zahi

Exercice 01: (Bac Tunisien 2012 - Session principale)

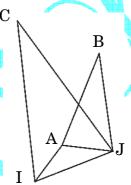
Dans le plan orienté, AIJ est un triangle quelconque, BAJ et CIJ sont deux triangles isocèles respectivement en B et C tels que $(\widehat{BA}, \widehat{BJ}) \equiv \frac{\pi}{6} [2\pi]$ et $(\widehat{CI}, \widehat{CJ}) \equiv \frac{\pi}{6} [2\pi]$

On désigne par t la translation de vecteur \overrightarrow{IA} et par $r_{\scriptscriptstyle B}$ et $r_{\scriptscriptstyle C}$ les rotations de même angle

 $\frac{\pi}{6}$ et de centres respectifs B et C

- 1) a) Déterminer $r_c(I)$
 - b) Montrer que $r_{_B} \circ t(I) = J$
 - c) En déduire que $r_B \circ t = r_c$
- 2) Soit K = t(C)

Montrer que BC = BK et $(\widehat{\overline{BC}}, \widehat{\overline{BK}}) \equiv -\frac{\pi}{6} [2\pi]$



- 3) Soit D le point du plan tel que le triangle DIA est isocèle en D et $(\widehat{\overline{DI}}, \widehat{\overline{DA}}) \equiv \frac{\pi}{6} [2\pi]$
 - a) Soit O le milieu de [AC]. Montrer que l'image du triangle DIA par la symétrie centrale de centre O est le triangle BKC
 - b) Montrer que ABCD est un parallélogramme

Exercice 02 : (Bac Tunisien 2012 - Session de contrôle)

On considère dans le plan orienté un carré ABCD de centre O tel que $(\widehat{AB}, \widehat{AD}) \equiv \frac{\pi}{2} [2\pi]$ On note I, J et K les milieux respectifs des segments [AB], [CD] et [AD]

Soit S la similitude directe qui transforme A en O et B en J

- 1) Montrer que S est de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{2}$
- 2) a) Déterminer les images des droites (BC) et (AC) par S
 - b) En déduire S(C)
- 3) a) Déterminer l'image du carré ABCD par S
 - b) En déduire que S(D) = K
 - c) Soit Ω le centre de S. Montrer que Ω est le barycentre des points pondérés (C,1) et (K,4)
 - d) Soit E le milieu du segment $\lceil OD \rceil$. Montrer que $S \circ S(A) = E$
 - e) Construire Ω
- 4) Montrer que les droites (AE), (CK) et (DI) sont concourantes

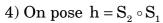
Exercice 03: (Bac Tunisien 2013 - Session de contrôle)

Le plan est orienté. Dans la figure ci-contre, ABCD est rectangle tel que AB = 1

et AD = $\frac{1+\sqrt{5}}{2}$ et FCDE et BFGH sont des carrés

- 1) On pose $q = \frac{-1 + \sqrt{5}}{2}$
 - a) Montrer que $q^2 = 1 q$
 - b) Vérifier que FG = q et que $EG = q^2$
- 2) $\operatorname{Soit} S_1$ la similitude directe de centre F, d'angle $\frac{\pi}{2}$ et de rapport q
 - a) Montrer que $S_1(C) = G$
 - b) Déterminer l'image du carré FCDE par S₁
- 3) Soit \mathbf{S}_2 la similitude directe de centre G qui transforme H en E

Montrer que S_2 est de rapport q et d'angle $-\frac{\pi}{2}$



- a) Montrer que h(D) = E
- b) Montrer h est une homothétie de rapport q²
- c) Montrer que $\overrightarrow{AE} = q^2 \overrightarrow{AD}$ et en déduire le centre de h
- d) Montrer que les points A, G et C sont alignés
- e) Soit I = h(E) et J = h(F).

Construire les points J et I et déterminer alors l'image du carré BFGH par S₂

- 5) On considère la suite (a_n) définie sur \mathbb{N} par $a_n = q^{2n}$
 - a) Vérifier que a₀, a₁ et a₂ sont les aires respectives des carrés FCDE, BFGH et GEIJ
 - b) On pose pour tout entier naturel n, $A_n = a_0 + a_1 + a_2 + ...a_n$. Exprimer A_n en fonction de n et vérifier que la limite de A_n est égale à l'aire du rectangle ABCD

Exercice 04: (Bac Tunisien 2008 - Session principale)

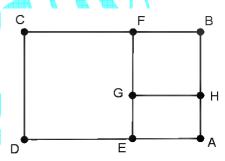
Le plan est orienté dans le sens direct

OAB est un triangle rectangle et isocèle tel que OA = OB et $(\overrightarrow{OA}, \overrightarrow{OB}) \equiv \frac{\pi}{2} [2\pi]$

On désigne par I le milieu du segment [AB] et par C et D les symétriques respectifs du point I par rapport à O et à B. (voir figure)

Soit f la similitude directe qui envoie A sur D et O sur C

- 1) Montrer que f'est de rapport 2 et d'angle $\frac{\pi}{2}$
- 2) a) Montrer que O est l'orthocentre du triangle ACD
 - b) Soit J le projeté orthogonal du point O sur (AC). Déterminer les images des droites (OJ) et (AJ) par f et en déduire que J est le centre de la similitude f
- 3) Soit g
 la similitude indirecte de centre I, qui envoie A sur D
 - a) Vérifier que g est de rapport 2 et d'axe(IC). En déduire g(O)
 - b) Déterminer les images de C et D par $g\circ f^{-1}.$ En déduire la nature de $\,g\circ f^{-1}$
- $4) \ Soit \ I'=f(I) \ et \ J'=g(J)$
 - a) Déterminer les images des points J et $\,I'\,par\,\,g\circ f^{-1}\,$
 - b) Montrer que les droites (IJ) , (I'J') et (CD) sont concourantes



Exercice 05: (Bac Tunisien 2009 - Session principale)

Dans le plan orienté on considère un triangle ABC isocèle rectangle en A tel que

 $(\widehat{\overline{AB}}, \widehat{\overline{AC}}) \equiv \frac{\pi}{2} \Big[\, 2\pi \, \Big] \ . \ On \ d\acute{e}signe \ par \ I, \ J, \ K \ et \ L \ les \ milieux \ respectifs \ des \ segments$

$$[AB],[BC],[AC]$$
 et $[JC]$

- 1) Faire une figure
- 2) Soit f la similitude directe de centre J qui envoie A sur K
 - a) Déterminer l'angle et le rapport de f
 - b) Justifier que f(K) = L
 - c) Soit H le milieu du segment $\lceil AJ \rceil$. Justifier que f(I) = H
- 3) On munit le plan du repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AC})$

Soit φ l'application du plan dans lui même qui à tout M point d'affixe z associe le point

M' d'affixe z' tel que z' =
$$-\left(\frac{1+i}{2}\right)\overline{z} + \frac{1+i}{2}$$

- a) Montrer que φ est une similitude indirecte de centre C
- b) Donner les affixes des points I, J, K et H
- c) Déterminer $\phi(I)$ et $\phi(J)$
- d) Déduire alors que ϕ = $f \circ S_{(IK)}$, où f est la similitude définie dans 2) et $S_{(IK)}$ est la symétrie orthogonale d'axe (IK)
- 4) Soit Δ l'axe de la similitude ϕ
 - a) Tracer Δ
 - b) La droite Δ coupe les droites (IK) et (HL) respectivement en P et Q Montrer que $\varphi(P) = f(P)$ et en déduire que $\varphi(P) = Q$

Exercice 06: (Bac Tunisien 2009 - Session de contrôle)

Dans la figure ci-contre ABCD est un rectangle de centre O et tel que $(\widehat{AB}, \widehat{AC}) \equiv \frac{\pi}{6} [2\pi]$.

Le point E désigne le symétrique du point A par rapport à D. (voir figure)

Soit S la similitude directe de centre C, de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{3}$

- 1) a) Justifier que S(A) = B
 - b) Montrer que le triangle ACE est équilatéral En déduire que S(E) = O
- 2) Soit I un point du segment [EO] distinct des points E et O et soit (Γ) le cercle de centre I et passant par A.

Les droites (AD) et (AB) recoupent le cercle (Γ) respectivement en M et P

3

- a) Reproduire la figure et tracer (Γ) et placer les points M et P
- b) Justifier que le point C appartient (Γ)
- 3) Soit N le projeté orthogonal du point C sur la droite (MP)
 - a) Montrer que $(\widehat{\overline{MP}, MC}) \equiv \frac{\pi}{6} [2\pi]$
 - b) En déduire que S(M) = N
- 4) Montrer que les points B, D et N sont alignés

