Epreuve:

Mathématiques

Durée: 2 heures

Lycée de Sbeïtla Devoir de contrôle N° 3

Classe: 4^{eme} Maths 2

Année scolaire: 2014 // 2015

Professeur:

Elabidi Zahi

Exercice 01

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}; \vec{j}; \vec{k})$ on considère les points A(0;0;1), B(0;1;0), C(1;0;0) et D(1;1;1)

- 1) a) Montrer que les points A, Bet C sont non alignés
 - b) Calculer l'aire du triangle ABC
 - c) Déterminer une équation cartésienne du plan P passant par les points A, Bet C
 - e) Vérifier que le point D n'appartient pas à P
 - f) Calculer le volume du tétraèdre ABCD
- 2) Soit S l'ensemble des points M(x;y;z) tels que $x^2 + y^2 + z^2 x y z + \frac{1}{2} = 0$
 - a) Montrer que S est une sphère dont on précisera le centre Ω et le rayon R
 - b) Montre que $S \cap P$ est un cercle dont on précisera le centre et le rayon
- 3) Soit h l'homothétie de centre O et de rapport 2 . Déterminer une équation cartésienne du plan Q image de P par h

Exercice 02

Le plan est rapporté à un repère orthonormé $(0; \vec{i}; \vec{j})$

On considère la courbe $\mathcal{H}: \mathbf{x}^2 - \mathbf{y}^2 - \mathbf{1} = \mathbf{0}$

- 1) a) Montrer que $\mathcal H$ est une hyperbole dont on précisera les foyers, les sommets, les directrices et les asymptotes
 - b) Tracer \mathcal{H}
- 2) Soit ${\mathscr A}$ l'aire, en unité d'aire, de la partie du plan limitée par ${\mathscr H}$ et la droite

$$\Delta: x = \sqrt{2}$$
 .
Montrer que $\,\,\mathscr{S} = 2 \int_{1}^{\sqrt{2}} \sqrt{t^2 - 1} \, dt$

$$3) \; Soit \; \; F: x \mapsto \int_1^{\,g(x)} \sqrt{t^2-1} \; \, dt \; \; où \; g(x) = \frac{1}{2} (e^x + e^{-x})$$

a) Montrer que F est dérivable sur $\left[0;+\infty\right[$ et calculer F'(x) ; pour tout $x\geq0$

1

- b) En déduire F(x) en fonction de x; pour tout $x \ge 0$
- c) Calculer $g(\ln(1+\sqrt{2}))$. En déduire alors ${\mathscr A}$

Exercice 03

Partie A

- 1) Montrer que pout tout réel t strictement positif, $\ \ln t \leq t-1$
- 2) Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = \begin{cases} \frac{x}{x \ln x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$
 - a) Montrer que f est continue à droite en 0

- b) Etudier la dérivabilité de f à droite en 0
- c) Calculer $\lim_{x \to +\infty} f(x)$
- 3) Dresser le tableau de variation de f
- 4) Soit $\,\mathscr{C}\,$ la courbe représentative de f dans un repère orthonormé $\,(O;\vec{i}\,;\vec{j}\,)$
 - a) Donner une équation cartésienne de la tangente T à $\,\mathscr{C}\,$ au pont d'abscisse 1
 - b) Tracer T et \mathscr{C}

5) Soit
$$x>1$$
et (v_n) la suite définie sur \mathbb{N} par $:v_n=1+\frac{\ln x}{x}+...+\left(\frac{\ln x}{x}\right)^n$

Montrer que (v_n) est convergente et préciser sa limite

Partie B

Soit F la fonction définie sur $]0;+\infty[$ par $F(x) = \int_1^x \frac{t}{\ln t - t} dt$

- 1) Etudier le sens de variation de F
- 2) Déterminer le signe de F(x) suivant les valeurs de x

3) a) Montrer que pour tout
$$x \in \left]0;1\right]$$
, $0 \le \frac{x}{x - \ln x} \le x$

b) En déduire que pour tout
$$x \in \left]0;1\right]$$
, $\frac{x^2-1}{2} \le F(x) \le 0$ et que $-\frac{1}{2} \le \lim_{x \to 0^+} F(x) \le 0$

4) Montrer que pour tout $x \ge 1$, $f(x) \ge 1$. En déduire que $\lim_{x \to +\infty} F(x) = +\infty$

5) a) Soit
$$x > 0$$
. Calculer les intégrales $\int_1^x \left(1 + \frac{\ln t}{t}\right) dt$ et $\int_1^x (1 + \ln t) dt$

b) Montrer que pour tout
$$t \ge 1$$
 , $\frac{t}{t - \ln t} \le 1 + \ln t$

c) En déduire que pour tout
$$\,x \geq 1$$
 , $F(x) \leq x \ln x\,$

d) Montrer que pour tout
$$x \ge 1$$
, $x + \frac{\left(\ln x\right)^2}{2} - 1 \le F(x)$

e) Donner un encadrement de l'intégrale
$$\int_1^e \frac{t}{t-\ln t} dt$$