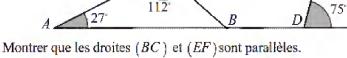


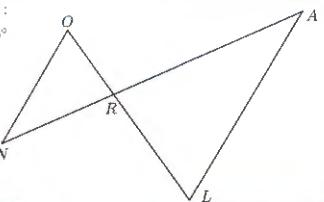
I- Déterminer la valeur de la mesure de l'angle x en degré dans chacun des cas suivants :



II- On considère la figure ci-contre :

- 1) donner la mesure de l'angle ABC
- 2) En déduire que les droites (AB) et (CD) sont parallèles

III-Dans la figure les points A, B, D et E sont alignés.

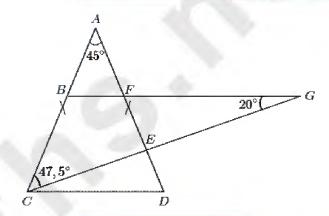


Exercice n°2

Dans la figure ci-contre, on donne :

 $\widehat{RAL} = \widehat{RNO} = 35^{\circ} \text{ et } \widehat{ALR} = 65^{\circ}$

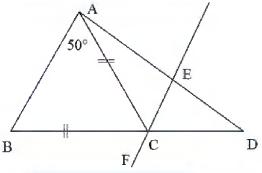
- Montrer que les droites (ON) et (AL) sont parallèles.
- 2. Calculer \widehat{ARL} .
- 3. a/ Montrer que les angles \widehat{ALR} et \widehat{NOR} sont égaux.
 - b/ Calculer \widehat{NRL} et \widehat{ARO} .



Exercice n°3

Dans la figure ci – contre, ACD est un triangle isocèle tel que :

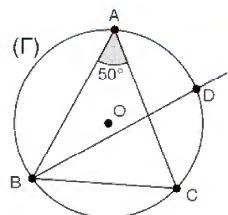
$$AC = 6.5$$
; $AF = 2.8$ et $CD = 5$.


- 1) a) Montrer que l'on $a : GCD = 20^{\circ}$. b) En déduire que $(DC) \parallel (BG)$.
- 2) a) Calculer GBC et déduire que le triangle AFB est isocèle en A.
 - b) Calculer la distance BF.

Exercice n°4

Sur la figure ci-dessous , le triangle ABC est isocèle en C ; les droites (AB) et (CE) sont parallèles et $\widehat{BAC} = 50^{\circ}$.

- 1. Calculer, en justifiant votre réponse, les angles \widehat{ABC} , \widehat{ACB} , \widehat{ACE} , \widehat{BCF} et \widehat{DCE} .
- 2. On donne ensuite $\widehat{CDE}=45^{\circ}$. Calculer, en justifiant votre réponse, les angles $\widehat{CED},\,\widehat{CEA}$ et $\widehat{CAE}.$

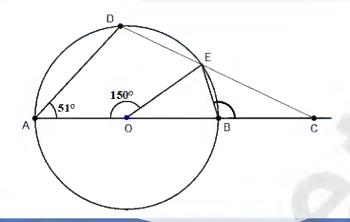


Exercice n°5

Soit (Γ) un cercle de centre O, circonscrit à un triangle ABC isocèle de sommet principal (Γ) A tel que $\widehat{BAC} = 50^{\circ}$.

La bissectrice de l'angle ABC rencontre le cercle (Γ) au point D

- 1)a) Déterminer ABC.
 - b) En déduire la mesure de l'angle AOC.
- 2) Calculer DĈA et DÂC .



LYCEE DE SBEITLA 18/10/2021

Exercice n°6

Dans la figure ci – contre & est un cercle de centre O [AB] est un diamètre de &

- Déteminer la mesure de l'angle CBE.
- 2) Montrer que $OED = 54^{\circ}$
- Déteminer la mesure de l'angle ADE.

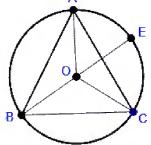
Exercice n°7

Soit ABC un triangle inscrit dans un cercle (C) de centre 0 tel que [AC] est un diamètre et $\overline{CAB} = 30^{\circ}$

- 1) a) Montre que le triangle ABC est rectangle en B.
 - b) Calculer ACB.
- 2) a) Calculer COB.
 - b) En déduire que OCB est un triangle équilatéral.
- La bissectrice de l'angle OBC recoupe le cercle (C) en E.
 - a) Calculer BEC.
 - b) En déduire que les droites (OB) et (EC) sont parallèles.

Exercice n°8

Soit ζ un cercle de centre O et de rayon 4 cm . ABC un triangle inscrit dans le cercle ζ tel que \widehat{ABC} = 64° . La bissectrice de l'angle \widehat{ABC} coupe le cercle ζ en un point D .

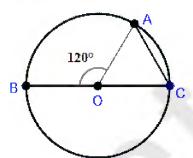

La parallèle a la droite (AB) passant par D coupe la droite (BC) en E et coupe le cercle ζ en F.

- 1) Faire une figure
- a- Montrer que le triangle BED est isocèle
 b-Déduîre la mesure de l'angle BED
- a- Montrer que BCF = 32
 b- Déduire que les droites (BD) et (CF) sont parallèles

Exercice n°9

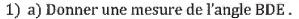
Dans la figure ci-dessous on a construit un triangle équilatéral inscrit dans le cercle (C) de centre O, la demi droite [BE) est la bissectrice de l'angle \hat{ABC}

- 1) a) Montrer que $\hat{AOC} = 120^{\circ}$
 - b) Vérifier que OAC est un triangle isocèle en O puis déduire que $\hat{OCA} = 30^{\circ}$
 - c) Montrer que $\hat{CAE} = 30^{\circ}$ puis déduire que les droites (OC) et (AE) sont parallèles.
- 2) a) Montrer que $0\hat{A}C = A\hat{C}E$ puis déduire que les droites (AO) et (EC) sont parallèles.
 - b) Déduire que AOCE est un losange.

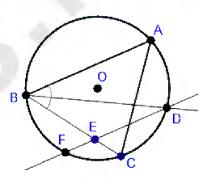


Exercice n°10

Soit (ζ) un cercle de diamètre [BC] est de centre O et A un point de (ζ) tel que


 $B\hat{O}A = 120^{\circ}$ (voir figure ci-contre)

- 1) a) Reprendre la figure sur votre copie.
 - **b)** Montrer que $O \hat{A} B = 30^{\circ}$ et $B \hat{A} C = 90^{\circ}$
- 2) La droite (OA) recoupe (ζ) en un point D.
 - a) Comparer $B\hat{A}D$ et $\hat{C}D$. Justifier votre réponse.
 - b) En déduire que les droites (AB) et (CD) sont parallèles.
- 3) Quelle est la nature du quadrilatère ABDC ? Justifier votre réponse.
- 4) Soit M un point de l'arc $[\widehat{AB}]$ ne contenant pas le point D. Calculer la mesure de l'angle $D\widehat{MC}$. Justifier votre réponse.



Exercice n°11

Soit ABC un triangle inscrit dans un cercle (Γ) tel que $\widehat{ABC}=56^\circ$. La bissectrice de l'angle ABC coupe le cercle (Γ) en un point D. La parallèle à la droite (AB) passant par D coupe la droite (BC) en E et coupe le cercle (Γ) en F.

- b) En déduire que le triangle BDE est isocèle.
- c) Donner alors une mesure de l'angle BED.
- 2) a) Montrer que $\widehat{BCF} = 28^{\circ}$.
 - b) En déduire que les droites (BD) et (CF) sont parallèles.

Sigmaths.net