Epreuve Mathématiques Durée: 2H Devoir de contrôle n°2 Classe: 4ème ScExp Dhaouadi Nejib

Exercice 1 (6 points)

On considère la suite réelle (u_n) définie par : $u_0 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{5u_n - 4}$.

- 1) Montrer que pour tout entier naturel $n, 2 \le u_n \le 4$.
- 2) Montrer que la suite (u_n) est croissante.
- 3) En déduire que (u_n) est convergente et calculer sa limite.
- 4) a) Montrer que pour tout entier naturel n, $4 u_{n+1} \le \frac{5}{6} (4 u_n)$.
 - b) En déduire, à l'aide d'un raisonnement par récurrence, que pour tout entier $naturel\ n,\ 4-u_n \leq 2 \left(\frac{5}{6}\right)^n.$
 - c) Retrouver alors le résultat de 3).

Exercice 2 (6 points)

Soient α et β des réels strictement positifs tels que $\alpha < \beta$.

On définie les suites (x_n) et (y_n) par : $x_0 = 1$, $y_0 = 20$ et $\forall n \in \mathbb{N}$; $\begin{cases} x_{n+1} = \frac{x_n + \alpha y_n}{1 + \alpha} \\ y_{n+1} = \frac{x_n + \beta y_n}{1 + \beta} \end{cases}$

- 1) On note (w_n) la suite définie pour tout $n \in \mathbb{N}$ par : $w_n = y_n x_n$.
 - a) Montrer que (w_n) est une suite géométrique de raison $q = \frac{\beta \alpha}{(1+\alpha)(1+\beta)}$.
 - b) En déduire que pour tout entier naturel $n, x_n \leq y_n$.
- 2) a) Montrer que la suite (x_n) est croissante et que la suite (y_n) est décroissante.
 - b) En déduire que les suites (x_n) et (y_n) convergent vers une même limite l.
- 3) Dans la suite on prendra $\alpha = 3$, $\beta = 4$.

Pour tout entier naturel n, on pose $t_n = 4x_n + 15y_n$.

- a) Montrer que la suite (t_n) est constante.
- b) En déduire la limite commune des deux suites (x_n) et (y_n) .

Exercice 3 (8 points)

Soit m un nombre complexe non nul.

On pose $f(z) = z^3 - 2(1+m)z^2 + (m^2 + 3m + 1)z - m(1+m)$.

Parie A

- 1) Vérifier que f(1) = 0.
- 2) Déterminer les nombres complexes b et c pour lesquels $\forall z \in \mathbb{C}$, $f(z) = (z-1)(z^2 + bz + c).$
- 3) Résoudre, dans \mathbb{C} , l'équation f(z) = 0.

|Partie|B

Dans la suite on prendra $m = e^{i\theta}$ avec $\theta \in [0, \pi]$.

Dans le plan complexe muni d'un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$, on donne les points

- A, M et N d'affixes respectives 1, m et m + 1.
- 1) Déterminer les réels θ pour lesquels les points O, A et M sont alignés.
- 2) a) Montrer que pour tout réel $\theta \in \left]0,\pi\right[$, le quadrilatère OANM est un losange.
 - b) Déterminer θ pour que OANM soit un carré.
- 3) Détrminer l'ensemble \mathscr{C}_1 des points M et l'ensemble \mathscr{C}_2 des points N quand θ décrit l'intervalle $[0,\pi]$.

Correction Du devoir

Exercice 1

1) Raisonnement par récurrence :

- Pour $n = 0, 2 \le u_0 = 2 \le 4 \ vrai$
- Soit $n \in \mathbb{N}$, supposons que $2 \le u_n \le 4$ et montrons que $2 \le u_{n+1} \le 4$.

$$2 \le u_n \le 4 \Leftrightarrow 10 \le 5 u_n \le 20$$

$$\Leftrightarrow 6 \le 5 \ u_n - 4 \le 16 \Leftrightarrow \sqrt{6} \le \sqrt{5 \ u_n - 4} \le 4$$

Donc $2 \le u_{n+1} \le 4$ $car \ 2 \le \sqrt{6}$

• Conclusion: $\forall n \in \mathbb{N}, 2 \leq u_n \leq 4$.

2)
$$u_{n+1} - u_n = \frac{5u_n - 4 - u_n^2}{\sqrt{5u_n - 4} + u_n} = \frac{(u_n - 4)(1 - u_n)}{u_{n+1} + u_n}$$

$$2 \le u_{_{n}} \le 4 \Rightarrow u_{_{n}} - 4 \le 0, 1 - u_{_{n}} \le 0, u_{_{n+1}} + u_{_{n}} > 0$$

 $Donc \ u_{{\scriptscriptstyle n+1}} - u_{{\scriptscriptstyle n}} \geq 0 \ et \ (u_{{\scriptscriptstyle n}}) \ croissante$

3) (u_n) croissante et majorée (par 4) donc (u_n) est convergente. on pose $\lim_{n\to+\infty} u_n = l$

$$\begin{cases} \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \ \text{où} \ f : x \mapsto \sqrt{5x-4}. \\ (u_n) \ \text{converge vers} \ l \in [2,4] \end{cases}$$

 $f continue sur [2,4] \subset \left[\frac{4}{5}, +\infty\right[$

 $Donc \ f(l) = l.$

$$f(l) = l \Leftrightarrow 5l - 4 = l^2 \text{ et } l \geq \frac{4}{5}$$

La résolution de cette équation donne l = 4.

4) a)
$$4 - u_{n+1} = 4 - \sqrt{5u_n - 4} = \frac{5(4 - u_n)}{4 + \sqrt{5u_n - 4}}$$

$$2 \leq u_{n+1} \leq 4 \Rightarrow 6 \leq 4 + u_{n+1} \leq 8 \Rightarrow \frac{1}{4 + u_{n+1}} \leq \frac{1}{6}$$

$$\Rightarrow \frac{5}{4+u_{n+1}} \leq \frac{5}{6} \Rightarrow \frac{5(4-u_n)}{4+u_{n+1}} \leq \frac{5}{6}(4-u_n) \ sqfd$$

b) •Pour
$$n = 0$$
, $4 - u_0 = 2 \le 2 \left(\frac{5}{6}\right)^0 = 2$ vrai.

• Soit
$$n \in \mathbb{N}$$
, supposons que $4-u_n \leq 2 \left(\frac{5}{6}\right)^n$

et montrons que $4-u_{n+1} \leq 2\left(\frac{5}{6}\right)^{n+1}$.

On a
$$4 - u_{n+1} \le \frac{5}{6} (4 - u_n)$$
 et $4 - u_n \le 2 \left(\frac{5}{6}\right)^n$

Donc
$$4 - u_{n+1} \leq 2 \left(\frac{5}{6}\right)^{n+1}$$
.

$$c) \begin{cases} \forall n \in \mathbb{N}, \ 0 \leq 4 - u_n \leq 2 \left(\frac{5}{6}\right)^n \\ \lim_{n \to +\infty} 2 \left(\frac{5}{6}\right)^n = 0 \ car \ \frac{5}{6} \in \left]-1, 1\right[\end{cases}$$

Donc $(4 - u_n)$ converge et $\lim_{n \to \infty} (4 - u_n) = 0$

 \Rightarrow $(u_{\scriptscriptstyle n})$ est convergente et $\lim_{\scriptscriptstyle n \to +\infty} u_{\scriptscriptstyle n}$ = 4

Exercice 2

1)a)
$$w_{n+1} = y_{n+1} - x_{n+1} = \frac{x_n + \beta y_n}{1 + \beta} - \frac{x_n + \alpha y_n}{1 + \alpha}$$

$$(x_n + \beta y_n)(1 + \alpha) - (x_n + \alpha y_n)(1 + \beta)$$

$$=\frac{(x_n+\beta y_n)(1+\alpha)-(x_n+\alpha y_n)(1+\beta)}{(1+\beta)(1+\alpha)}$$

$$=\frac{\cancel{x}_{n}+\alpha x_{n}+\beta y_{n}+\alpha \beta \cancel{y}_{n}-\cancel{y}_{n}-\beta x_{n}-\alpha y_{n}-\alpha \beta \cancel{y}_{n}}{(1+\alpha)(1+\beta)}$$

$$=\frac{(\alpha-\beta)x_n+(\beta-\alpha)y_n}{(1+\alpha)(1+\beta)}=\frac{(\beta-\alpha)(y_n-x_n)}{(1+\alpha)(1+\beta)}$$

$$=qw_n \text{ avec } q = \frac{\beta - \alpha}{(1+\alpha)(1+\beta)} \text{ donc } (w_n) \text{ est}$$

une suite géométrique de raison q.

$$b) \ \forall n \in \mathbb{N}, \ w_n = w_0 q^n = 19q^n \geq 0 \ \ car \ \alpha < \beta$$

Donc
$$x_n \leq y_n$$

(2) a)
$$x_{n+1} - x_n = \frac{x_n' + \alpha y_n - x_n' - \alpha x_n}{1 + \alpha} = \frac{\alpha}{1 + \alpha} w_n$$

$$Or \ w_n \ge 0 \ donc \ x_{n+1} - x_n \ge 0 \Rightarrow (x_n) \ croissante.$$

$$y_{n+1} - y_n = \frac{x_n + \beta y_n - y_n - \beta y_n}{1 + \beta} = \frac{-1}{1 + \beta} w_n \le 0$$

Donc (y_n) décroissante.

b)
$$q-1 = \frac{\beta - \alpha}{(1+\alpha)(1+\beta)} - 1$$

$$=\frac{\beta -\alpha -1 -\alpha -\beta -\alpha \beta}{(1+\alpha)(1+\beta)} < 0 \ car \ \alpha > 0 \ et \ \beta > 0$$

 $Donc \quad 0 < q < 1 \quad et \ par \ suite \ \lim_{n \to +\infty} w_n = 0.$

$$\begin{cases} \forall n \in \mathbb{N}, \ x_n \leq y_n \\ (x_n) \ croissante \ et \ (y_n) \ d\'{e}croissante \\ \lim_{n \to +\infty} (y_n - x_n) = 0 \end{cases}$$

Donc (x_n) et (y_n) sont deux suites adjacentes $\Rightarrow (x_n)$ et (y_n) convergent vers la meme limite.

3)
$$x_{n+1} = \frac{x_n + 3y_n}{4}$$
 et $y_{n+1} = \frac{x_n + 4y_n}{5}$

a)
$$t_{n+1} = 4x_{n+1} + 15y_{n+1} = x_n + 3y_n + 3x_n + 12y_n$$

= $4x_n + 15y_n = t_n \Rightarrow (t_n)$ suite constante.

$$(x_n)$$
 et (y_n) convergent et $\lim_{n\to+\infty} x_n = \lim_{n\to+\infty} y_n = l$

en plus
$$\lim_{n\to +\infty} t_n = t_0 = 4x_0 + 15y_0 = 304$$

Donc
$$4l + 15l = 304 \Leftrightarrow l = \frac{304}{19} = 16$$
.

Exercice 3 (8 points)

Partie A

1) f(1) = 0 c'est difficile! je ne crois pas.

2)
$$\forall z \in \mathbb{C}$$
, $f(z) = (z-1)(z^2 + bz + c)$
= $z^3 + bz^2 + cz - z^2 - bz - c$
= $z^3 + (b-1)z^2 + (c-b)z - c$

$$\Leftrightarrow \begin{cases} b - 1 = -2 - 2m \\ c - b = m^{2} + 3m + 1 \Leftrightarrow \\ -c = -m - m^{2} \end{cases} \begin{cases} b = -1 - 2m \\ c = m + m^{2} \\ c - b = m + m^{2} + 1 + 2m \\ = m^{2} + 3m + 1 \end{cases}$$

3)
$$f(z) = 0 \Leftrightarrow z = 1$$
 ou $z^{2} - (1 + 2m)z + m + m^{2} = 0$

$$\Delta = 1 + 4m + 4m^2 - 4m - 4m^2 = 1$$

Donc
$$z' = \frac{1+2m-1}{2} = m$$
 et $z'' = \frac{1+2m+1}{2} = m+1$

En fin
$$S_{\mathbb{C}} = \{1, m, m+1\}$$

Partie B

1)
$$O$$
, A et M alignés $\Leftrightarrow \frac{Aff(\overrightarrow{OM})}{Aff(\overrightarrow{OA})} \in \mathbb{R}$

$$\Leftrightarrow m = e^{i\theta} \in \mathbb{R} \Leftrightarrow \theta \equiv 0 \ [2\pi] \Leftrightarrow \theta = 0 \ ou \ \theta = \pi$$

$$car \ \theta \in [0, \pi].$$

2)
$$Aff(\overrightarrow{OA}) = 1$$
 et $Aff(\overrightarrow{MN}) = m + 1 - m = 1$

$$\Rightarrow \overrightarrow{OA} = \overrightarrow{MN}$$
 en plus O , A et M ne sont pas alignés ($\theta \neq 0$ et $\theta \neq \pi$)

Donc OANM est un parallélogramme.

$$OA = 1$$
 et $OM = |m| = |e^{i\theta} = 1 \Rightarrow OA = OM|$.

OANM est un parallélogramme qui admet deux cotés consécutifs isométriques donc c'est un losange.

b)Le losange OANM est un carré ssi ON = AM

$$\Leftrightarrow \left| e^{i\theta} + \mathbf{1} \right| = \left| e^{i\theta} - \mathbf{1} \right|$$

$$\Leftrightarrow |\cos\theta + 1 + i\sin\theta| = |\cos\theta - 1 + i\sin\theta|$$

$$\Leftrightarrow (\cos \theta + 1)^2 + \sin^2 \theta = (\cos \theta - 1)^2 + \sin^2 \theta$$

$$\Leftrightarrow \cos^2 \theta + \sin^2 \theta + 2\cos \theta + 1$$

$$= \cos^2 \theta + \sin^2 \theta - 2\cos \theta + 1$$

$$\Leftrightarrow \cos \theta = 0 \Leftrightarrow \theta = \frac{\pi}{2} \ car \ \theta \in]0, \pi[.$$

3)
$$M(x, y) \in \mathcal{C}_1 \Leftrightarrow \begin{cases} x = \cos \theta \\ y = \sin \theta \ge 0 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 = 1 \\ et \ y \ge 0 \end{cases}$$

Donc C_1 est le demi cercle trigonométrique inclu dans le demi plan d'inéquation $y \ge 0$.

$$N(x, y) \in \mathcal{C}_2 \Leftrightarrow \begin{cases} x = 1 + \cos \theta \\ y = \sin \theta \ge 0 \end{cases} \Leftrightarrow \begin{cases} x - 1 = \cos \theta \\ y = \sin \theta \ge 0 \end{cases}$$

$$\begin{cases} (x-1)^2 + y^2 = 1 \\ y \ge 0 \end{cases} \Rightarrow \begin{cases} \mathcal{C}_2 \text{ est le demi cercle de} \\ \text{centre } A \text{ et de rayon } 1 \\ \text{inclu dans le demi plan } y \ge 0 \end{cases}$$

