Produit scalaire dans le plan

I. Préliminaire

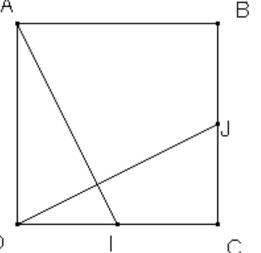
1. Activité N°1

Dans la figure ci-dessous, ABCD est un carré.

I et J sont les milieux respectifs des segments [CD] et [BC].

On se propose dans cette activité de démontrer que les droites (AI) et (DJ) sont perpendiculaires.

- On pose AB = a (a > o) et on rapporte le plan au repère orthonormé (D, \vec{i} , \vec{j}) tel que: $\vec{i} = \frac{1}{a} \overrightarrow{DC}$
- $\operatorname{et} \vec{J} = \frac{1}{a} \overrightarrow{\mathrm{D}A}$
- a) Déterminer les coordonnées des points I,C, J, B et A.
- b) Vérifier que les vecteurs AÍ et DÍ sont orthogonaux.
- c) Conclure.



2. Commentaire

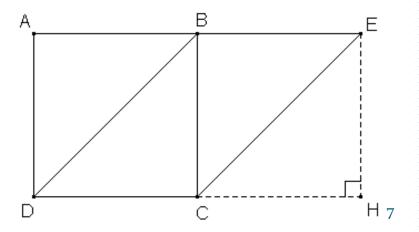
Ce chapitre a pour objectif d'introduire une nouvelle notion qui va nous permettre de résoudre ce problème, ainsi que d'autres, d'une manière plus simple!

II. Produit scalaire

1. Activité N°2 (l'activité N°1 page 6 du manuel scolaire)

Dans la figure ci-dessous, ABCD est un carré de côté a, BECD est un parallélogramme et H est le projeté orthogonal de E sur la droite (DC).

- 1. Calculer en fonction de a les réels $\|\overrightarrow{DB}\|$ et $\|\overrightarrow{DE} + \overrightarrow{BC}\|$
- 2. Calculer cosBDC et cosEDH.
- 3. Calculer $\|\overrightarrow{DB}\| \times \|\overrightarrow{DC}\| \cos \widehat{BDC}$ et $\|\overrightarrow{DE}\| \times \|\overrightarrow{DC}\| \cos \widehat{EDC}$



2. Définition

Soit u et v deux vecteurs du plan. O un po int du plan,

A et B les points définis par : $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

On appelle produit scalaire de u et v, le réel défini par :

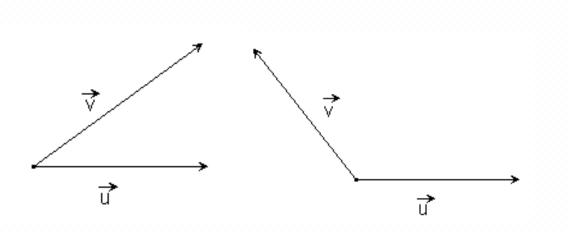
$$\vec{u} \cdot \vec{v} = \begin{cases} OA.OB.\cos A\hat{O}B & \overrightarrow{si} \ \vec{u} \neq \vec{0} \text{ et } \vec{v} \neq \vec{0} \\ 0 & \overrightarrow{si} \ \vec{u} = \vec{0} \text{ ou } \vec{v} = \vec{0} \end{cases}$$

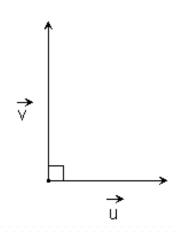
3. Application N°1

a) Soit ABCD un carré de sens direct, de côté 4 et de centre I.

Calculer:

b) Préciser le signe de u.v dans chacun des cas suivants:





4. Conséquences

a)
$$[\vec{u} \text{ et } \vec{v} \text{ sont colineaires }] \text{ ssi } [|\vec{u}.\vec{v}| = ...]$$

b)soit u et v deux vecteurs non nuls.

*
$$[\vec{u}$$
 et \vec{v} sont colineaires et de même sens] ssi $[\vec{u}.\vec{v} = ...$]

*
$$[\vec{u}$$
 et \vec{v} sont colineaires et de sens contraires] ssi $[\vec{u}.\vec{v} = ...$]

c) [
$$\vec{u}$$
 et \vec{v} sont orthogonaux] ssi [\vec{u} . \vec{v} = ...

d) Pour tous vecteurs
$$\vec{u}$$
 et \vec{v} on a: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

f)
$$|\vec{u}.\vec{v}| \le |\vec{u}| \times |\vec{v}|$$
 (Inégalité de Cauchy schawrz)

5. Propriétés du produit scalaire

Propriétés

Pour tous vecteurs u et v on a:

•
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u}.\vec{v}$$

• $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u}.\vec{v}$
• $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$

N.B: les propriétés précédentes sont connues sous le nom de règles du parallélogramme.

Théorème d'El-kashi

Soit ABC un triangle.

On pose:
$$a = BC$$
, $b = AC$ et $c = AB$

$$a^2 = b^2 + c^2 - 2bc.\cos \hat{A}$$

$$b^2 = a^2 + c^2 - 2ac.\cos\widehat{B}$$

$$c^2 = a^2 + b^2 - 2ab.\cos\widehat{C}$$

Application

ABC est un triangle avec: AC = 3; AB = 8 et $B\hat{A}C = \pi/3$. Calculer BC.

Théorème

Soit ABC un triangle.

On pose a = BC, b = AC et c = AB et on désigne par R le rayon du cercle circonscrit à ABC et par S l'aire de ce triangle

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

Propriété

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} on a:

$$\overrightarrow{u}.(\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u}.\overrightarrow{v} + \overrightarrow{u}.\overrightarrow{w}$$

Activité N°4

Soit u et v deux vecteurs et k un réel. O est un po int du plan.

On suppose que
$$\vec{u} \neq \vec{0}, \vec{v} \neq \vec{0}$$
 et $k \neq 0$

On désigne par A, B, A 'et B 'les points du plan définis par :

$$\overrightarrow{OA} = \overrightarrow{u}, \overrightarrow{OB} = \overrightarrow{v}, \overrightarrow{OA'} = \overrightarrow{ku} \text{ et } \overrightarrow{OB'} = \overrightarrow{kv}.$$

- a) Comparer, suivant le signe de k, cos AÔB et cos A'ÔB
- b) Etablir alors l'égalité : $(k\bar{u}).\bar{v} = k(\bar{u}.\bar{v})$
- c) Montrer que : \vec{u} .(\vec{k} \vec{v}) = \vec{k} (\vec{u} . \vec{v})

En remarquant que les égalités précédentes restent valables pour

$$\vec{u} = \vec{0}$$
 ou $\vec{v} = \vec{0}$ ou $\vec{k} = 0$, on déduit :

Propriété

Pour tous vecteurs u et V et tout réel k, on a:

$$(\overrightarrow{ku}).\overrightarrow{v} = \overrightarrow{u}.(\overrightarrow{kv}) = \overrightarrow{k(u.v)}$$

Activité N°5

Soit u et v deux vecteurs ; k et k' deux réels. O est un point du plan.

On suppose que $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$, $k \neq 0$ et $k' \neq 0$

On désigne par A, B, A' et B' les points du plan définis par:

$$\overrightarrow{OA} = \overrightarrow{u}$$
, $\overrightarrow{OB} = \overrightarrow{v}$, $\overrightarrow{OA'} = k\overrightarrow{u}$ et $\overrightarrow{OB'} = k'\overrightarrow{v}$.

a) On suppose que k et k' sont de même signe.

Comparer cosAÔB et cosA'ÔB' et en déduire l'égalité:

$$(\mathbf{k}\mathbf{u}).(\mathbf{k}'\mathbf{v}) = \mathbf{k}\mathbf{k}'(\mathbf{u}.\mathbf{v})$$

b) On suppose que k et k' sont de signes contraires.

Montrer que: $(\vec{ku}) \cdot (\vec{k'v}) = \vec{kk'}(\vec{u} \cdot \vec{v})$

Propriété

Pour tous vecteurs u et v et tout réel k on a:

$$(\overrightarrow{ku}).(\overrightarrow{k'v}) = \overrightarrow{kk'(u.v)}$$

Activité N°5 page 9

Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs tels que \vec{u} . $\vec{v} = -2$

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{w}} = 1 \text{ et } \vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = 0.5.$$

- 1. Calculer $(2\vec{u} + \vec{v}) \cdot \vec{w}$ et $-\vec{v} \cdot (\vec{u} \vec{w})$.
- 2. Calculer $\vec{u} \cdot (\vec{v} \vec{w}) + \vec{v} \cdot (\vec{w} \vec{u}) + \vec{w} \cdot (\vec{u} \vec{v})$.

Activité N°6 page 9

Soit \vec{u} et \vec{v} deux vecteurs.

Soit O, A et B trois points tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

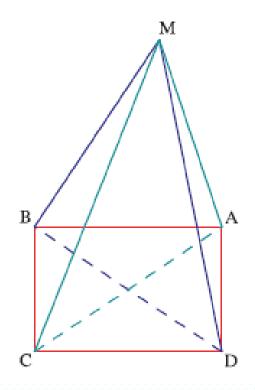
On suppose que
$$OA = 2$$
, $OB = 3$ et $\widehat{AOB} = \frac{\pi}{6}$.

Calculer
$$\|\vec{u} + \vec{v}\|^2$$
, $\|\vec{u} - \vec{v}\|^2$ et $(2\vec{u} + \vec{v}) \cdot (\vec{u} - 3\vec{v})$.

Activité N°7 page 9

Soit M un point du plan.

Montrer que la somme des carrés des distances de M à deux sommets opposés d'un rectangle est égale à la somme des carrés des distances de M aux deux autres sommets.



Application N°4

Soit A et B deux points distincts.

Déterminer chacun des ensembles suivants:

$$\Delta = \{ \mathbf{M} \in \mathbf{P} \text{ tel que : } \overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AM}} = \mathbf{0} \}$$

$$\Gamma = \{M \in P \text{ tel que : } MA.MB = 0\}$$

Commentaire

 Δ et Δ' sont deux droites de vecteurs directeurs respectifs \vec{u} et \vec{u}' .

$$[\Delta \perp \Delta'] \Leftrightarrow [\vec{u} \cdot \vec{u'} = 0]$$

6. Produit scalaire et projection orthogonale

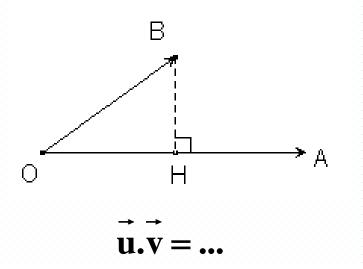
Activité N°6

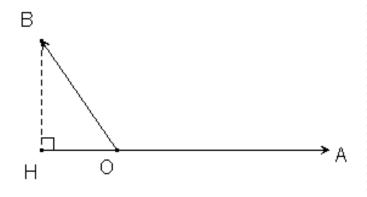
Soit u et v deux vecteurs du plan. O un po int du plan,

A et B les points définis par : $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

On désigne par H le projeté orthogonal de B sur (OA)

- a) Montrer que: $\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{OA}.\overrightarrow{OH}$
- b) Exprimer u.v en fonction de OA et OH dans chacun des cas suivants:





Propriété

Soit \vec{u} et \vec{v} deux vecteurs du plan. O un po int du plan, A et \vec{B} les po int s définis par : $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

$$\vec{u} \cdot \vec{v} = \overrightarrow{OA} \cdot \overrightarrow{OH}$$

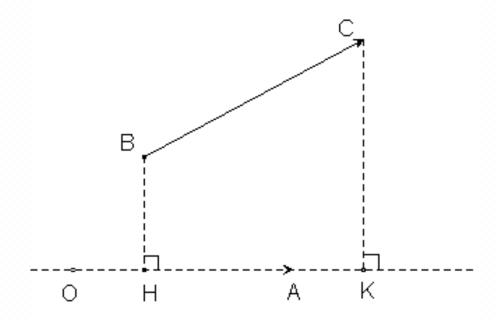
Où H est le projeté orthogonal de B sur (OA)

Activité N°2 page N°11

Soit u et v deux vecteurs non nuls.

On désigne par O, A, B et C quatre points tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{BC}$.

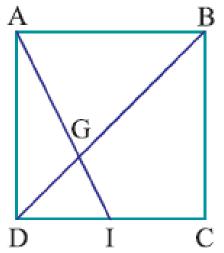
On désigne par H et K les projetés orthogonaux respectifs de B et C sur la droite (OA). Montrer que $\vec{u} \cdot \vec{v} = \overrightarrow{OA} \cdot \overrightarrow{HK}$.



Activité N°3 page N°11

Soit ABCD un carré de côté 3, I le milieu de [DC] et G le point d'intersection de [BD] et [AI].

- 1. a. Calculer AI, GB, GD, GA et GI.
 - b. En déduire \overrightarrow{AB} . \overrightarrow{AI} , \overrightarrow{DG} . \overrightarrow{DC} et \overrightarrow{GA} . \overrightarrow{GD} .
- 2. a. Calculer cos IAB et cos DGI.
 - b. En déduire une valeur approchée à 10-2 près en radians de \widehat{IAB} et \widehat{DGI} .



Activité

Soit A et B deux points distincts,

1/ Déterminer l'ensemble des points M du plan tel que:

$$\overrightarrow{AB}.\overrightarrow{AM} = AB \times AM$$

2/ Déterminer l'ensemble des points M du plan tel que:

$$\overrightarrow{AB}.\overrightarrow{AM} = -AB \times AM$$

7. Expression analytique du produit scalaire dans une base orthonormé

N.B: dans ce qui suit, l'ensemble \mathcal{F} des vecteurs du plan muni d'une base orthonormée $(0,\vec{i},\vec{j})$

Activité N°7

On considère les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix} \underbrace{et}_{v} \vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

- a) Exprimer en fonction de x et \vec{y} \vec{i} . \vec{u} , \vec{j} . \vec{u} et $||\vec{u}||$.
- b) Exprimer $\vec{u} \cdot \vec{v}$ en fonction de x, y, x' et y'.

Théorème

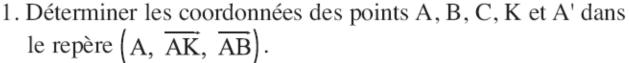
Si
$$\vec{\mathbf{u}} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$
 et $\vec{\mathbf{v}} \begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix}$ alors $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \mathbf{x}\mathbf{x'} + \mathbf{y}\mathbf{y'}$

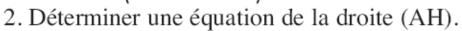
Cours élaboré par le prof: Chouihi

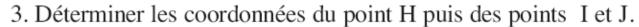
Activité N°3 page N°12

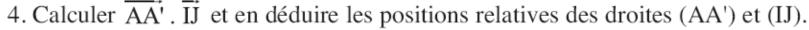
Dans la figure ci-contre, AB = 1 et ABC est un triangle rectangle en A tel que AC = 2 AB.

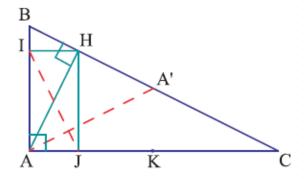
On désigne par A' et K les milieux respectifs de [BC] et [AC] et par H, I et J les projetés orthogonaux respectifs de A sur (BC), de H sur (AB) et de H sur (AC).











Exercice

Le plan est muni d'un repère orthonormé $(\bigcirc, \overline{i}, \overline{j})$. Soit A et B deux points distincts.

- 1) Soit E l'ensemble des points M du plan vérifiant : $\overrightarrow{u} \cdot \overrightarrow{AM} = k$. Déterminer analytiquement l'ensemble E dans chacun des cas:
- <u>a)</u> $\vec{u} = 2\vec{i}$, A(1,1) et $\vec{k} = 3$ b) $\vec{u} = -3\vec{i} + 4\vec{j}$, A(2,3) et $\vec{k} = -5$
- 2) Soit E l'ensemble des points M du plan vérifiant : MA MB = k . Déterminer analytiquement l'ensemble E dans chacun des cas:
- a) A(1,2); B(-3,4) et k = 0
- b) A(4,0); B(0,1) et $k = -\frac{1}{4}$

- c) $\underline{A}(2,-1)$; B(5,3) et k = -7
- 3) Soit E l'ensemble des points M du plan vérifiant: $\frac{MA}{MB} = k$

Déterminer analytiquement l'ensemble E dans chacun des cas:

a)
$$A(-1,0)$$
; $B(2,0)$ et $k = 1$

b)
$$A(-1,0)$$
; $B(2,0)$ et $k = 2$