Déplacements & antidéplacements

I. Classification des isométries

1) Activité:

Dans le plan orienté, on considère trois points A, B et C d'images respectives A', B' et C' par une isométrie f.

- a) Exprimer $\cos(\overrightarrow{AB} \ , \overrightarrow{AC})$ en fonction de AB, AC et $\overrightarrow{AB} . \overrightarrow{AC}$.
- b) Exprimer $\cos(\overrightarrow{A'B'}, \overrightarrow{A'C'})$ en fonction de A'B', A'C' et $\overrightarrow{A'B'}$. $\overrightarrow{A'C'}$.
- c) En déduire l'égalité :

$$\cos(\overrightarrow{A'B'}, \overrightarrow{A'C'}) = \cos(\overrightarrow{AB}, \overrightarrow{AC})$$

Que peut on conclure pour $(\overrightarrow{A'B'}, \overrightarrow{A'C'})$ et $(\overrightarrow{AB}, \overrightarrow{AC})$?

2) Définition:

Soit f une isométrie du plan.

- f est un déplacement si et seulement elle conserve les mesures des angles orientés.
- f est un antidéplacement si et seulement elle transforme les mesures des angles orientés en leurs opposées

3) Application:

a) Etant donnés quatre points A, B, C et D deux à deux distincts d'images respectives A', B', C' et D' par une isométrie f.

Comparer $(\overrightarrow{A'B'}, \overrightarrow{C'D'})$ et $(\overrightarrow{AB}, \overrightarrow{CD})$ dans chacun des cas suivants :

$$\label{eq:special_special} *\; f = S_\Delta \qquad *\; f = R_{(I,\alpha)} \qquad *\; f = \; t_{\tilde{u}}\; oS_\Delta$$

b) Compléter le tableau suivant :

f	Déplacement	antidéplacement
Rotation		
Symétrie orth		
Translation		
Symétrie gliss		

4) Récapitulation :

Un	déplacement	Un	antidéplacement
	Est la composée d'un nombre pair de symétries orthogonales Se ramène à la composée de deux	A	Est la composée d'un nombre impair de symétries orthogonales Se ramène à la composée de trois
	symétries orthogonales		symétries orthogonales
>	Transforme tout repère orthonormé direct en un repère orthonormé direct	À	Transforme tout repère orthonormé direct en un repère orthonormé indirect
A	Conserve les mesures des angles orientés	A	Transforme les mesures des angles orientés en leurs opposées
\	Est une translation ou une rotation	\	Est une symétrie orthogonale ou une symétrie glissante

II. Angle d'un déplacement

1) Activité

Soient A et B deux points distincts d'images respectives A' et B' par un déplacement f. On

pose $\theta = (AB, A'B')[2\pi]$ et on se propose de démontrer que θ ne dépend que de f non pas du choix de A et B.

Soient C et D deux points distincts d'images respectives C' et D' par f.

Etablir l'égalité:

$$(\overrightarrow{CD}, \overrightarrow{C'D'}) \equiv (\overrightarrow{AB}, \overrightarrow{A'B'})[2\pi]$$

Conclure.

Commentaire:

L'angle $(\overrightarrow{AB}, \overrightarrow{A'B'})$ est appelé angle du déplacement f. Toute mesure θ de $(\overrightarrow{AB}, \overrightarrow{A'B'})$ est dite angle de f.

2) Application:

Préciser l'angle du déplacement f dans chacun des cas suivants :

3) Théorème:

- La composée de deux déplacements et un déplacement d'angle la somme des angles.
- La réciproque d'un déplacement d'angle α est un déplacement d'angle $(-\alpha)$

Justifier les résultats précédents

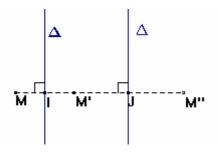
III. Décomposition d'un déplacement

1) Translation:

Activité N°1

On considère deux droites parallèles Δ et Δ ' et un point M du plan.

On pose $M' = S_{\Delta}(M)$ et $M'' = S_{\Delta'}(M')$.



- a) Préciser S_{Δ} , o $S_{\Delta}(M)$
- b) On désigne par I et J les milieux respectifs des segments [MM'] et [M'M''].

 Exprimer \overrightarrow{MM} " en fonction de \overrightarrow{IJ} .
- c) Montrer que le vecteur 2 IJ ne dépend pas du choix du point M.
 Conclure

Retenons: Si $\Delta I/\Delta$ alors $S_{\Delta} \circ S_{\Delta} = t_{2\vec{I}\vec{J}}$ où I est un point quelconque de Δ et J est son projeté orthogonale sur Δ .

Activité N°2

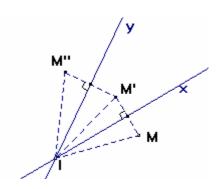
Etant donné un vecteur u, en s'inspirant du résultat précédent déterminer une décomposition de la translation de vecteur u en deux symétrie orthogonales. Cette décomposition est elle unique ?

Retenons: Toute translation $t_{\hat{u}}$ se décompose, d'une infinité de manières, en deux symétries orthogonales $S_{\Delta'} \circ S_{\Delta}$ où Δ est une droite arbitraire vérifiant $u \perp dir(\Delta)$ et $\Delta' = t_{\frac{1}{2}\hat{u}}(\Delta)$

2) Rotation:

Activité N°1

On considère deux droites (Ix) et (Iy) sécantes en un point I et un point M du plan. On pose $M' = S_{(Ix)}(M)$ et $M'' = S_{(Iy)}(M')$



- a) Etablir l'égalité: IM = IM''
- b) Exprimer $(\overrightarrow{IM}, \overrightarrow{IM})$ en fonction de $(\overrightarrow{Ix}, \overrightarrow{Iy})$
- c) Conclure.

Retenons:
$$S_{(Iy)} \circ S_{(Ix)} = R_{(I,2(\overrightarrow{Ix},\overrightarrow{Iy}))}$$

Activité N°2

Etant donnés un point I et un réel α , en s'inspirant du résultat précédent déterminer une décomposition de la rotation de centre I et d'angle α en deux symétrie orthogonales. Cette décomposition est elle unique ?

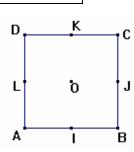
Retenons : Toute rotation $R_{(I,\,\alpha)}$ se décompose, d'une infinité de manières, sous la forme

$$R_{(I, \alpha)} = S_{(Iy)} oS_{(Ix)} \text{ avec } (\overrightarrow{Ix}, \overrightarrow{Iy}) \equiv \frac{\alpha}{2} [\pi]$$

Exercice:

1) Déterminer la forme réduite de $S_{(JL)}oS_{(AB)}$, $S_{(AC)}oS_{(AB)}$, $S_{(JK)}oS_{(AD)}$ $S_{(JL)}oS_{(AB)}oS_{(AD)}$ et $S_{(BD)}oS_{(AB)}$

2) Décomposer en deux symétries orthogonales : $R_{(A,\pi/2)}$, $t_{\overline{AB}}$, S_O



L.P. Kairouan Prof : Chouihi A.S : 05 / 06

3) Classification des déplacements

Soit f un déplacement ; Δ et Δ ' deux droites tel que $f = S_\Delta o S_{\Delta'}$. Le tableau suivant détermine la nature, l'angle et l'ensemble des points invariants par f suivant la position relative de Δ et Δ '.

Position relative de Δ et Δ '	Nature de f	Angle de f	Ensemble des points invariants
$\Delta = \Delta$	Identité	2kπ,	Le plan P
		$k \in \mathbb{Z}$	
Δ//Δ' et Δ ≠ Δ'	Translation	2kπ,	Φ
	de vecteur	$k \in \mathbb{Z}$	
	non nul		
$\Delta \perp \Delta'$ et	$\mathbf{S_{I}}$	$\pi + 2k\pi$	{I}
$\Delta \cap \Delta' = \{I \}$		$k \in \mathbb{Z}$	
$\Delta \cap \Delta' = \{I \} et$	$\mathbf{R}_{(\mathbf{I}, 2\alpha)}$	2α ≠	{I}
$(\overrightarrow{u}_{\Delta}, \overrightarrow{u}_{\Delta'}) \equiv \alpha [\pi]$		2kπ	

IV. Détermination d'une isométrie

Activité

Soient A, B, A' et B' quatre points du plan vérifiant: AB = A'B' et $AB \neq 0$.

- 1) On désigne par α une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{A'B'})$ et par R la rotation de centre A et d'angle α .
- a) On pose C = R(B). Montrer que ACB'A' est un parallélogramme .
- b) En déduire f(A) et f(B) où $f = t_{\overline{AA'}} \circ R$.
- c) On suppose qu'il existe un autre déplacement f'tel que f'(A) = A'et f'(B) = B' et on pose $\varphi = f'of^{-1}$ Déterminer $\varphi(A)$ et $\varphi(B)$. En déduire que f' = f.
- 2) On pose $g = S_{(A'B')}of$
- a) Quelle est la nature de g?
- b) Déterminer g(A) et g(B).
- c) Montrer que g est l'unique antidéplacement qui envoie A en A' et B en B'.

Théorème :

Si A, B, A' et B' sont quatre points du plan vérifiant : $AB = A'B' & AB \neq 0$ alors

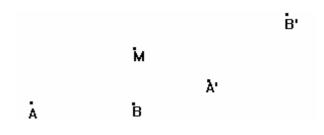
- Il existe un unique déplacement f vérifiant f(A) = A' et f(B) = B'.
- Il existe un unique antidéplacement g vérifiant : g(A) = A' et g(B) = B'.

N.B: Le théorème précédent prouve les assertions suivantes :

- Un déplacement est parfaitement déterminé par son action sur deux points distincts.
- Un antidéplacement est parfaitement déterminé par son action sur deux points distincts.

Exercice N°1:

On considère les points suivants :

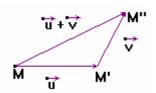


- a) Construire le point M' image du point M par le déplacement f qui transforme A en A' et B en B'.
- b) Construire le point M' image du point M par l'antidéplacement g qui transforme A en A' et B en B'.

V. Composition des isométries :

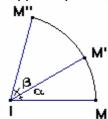
1) Translations

On rappelle que : $\mathbf{t}_{\vec{\mathbf{u}}}\mathbf{o}\mathbf{t}_{\vec{\mathbf{v}}} = \mathbf{t}_{\vec{\mathbf{v}}}\mathbf{o}\mathbf{t}_{\vec{\mathbf{u}}} = \dots$



2) Rotations de même centre

On rappelle que : $R_{(I, \alpha)} \circ R_{(I, \beta)} = \dots$



L.P. Kairouan Prof : Chouihi A.S : 05 / 06