L.P.Ibn Khaldoun Kairouan

Le: 14/03/2023

Devoir de synthèse $N^{\circ}2$

Durée: 4heures

Prof: Chouihi

Classe: 4M

Exercice $N^{\circ}1$ (4 points)

Soit dans IN l'équation (E) : $x^{53} \equiv 3$ [37]

1/ Soit x une solution de (E)

a/ Montrer que x et 37 sont premiers entre eux.

b/ Montrer que $x^{36} \equiv 1$ [37]

c/ Montrer que $x = 3^{17} [37]$

2/ Soit $x \in IN$

a/Montrer que si $x = 3^{17} [37]$ alors x est une solution de (E)

b/ En déduire l'ensemble des solutions de (E).

3/ Soit x une solution de (E). On pose $S = 1 + x + x^2 + ... + x^{52}$

a/ Vérifier que $(x - 1)S = x^{53} - 1$

b/ Montrer que $12S \equiv 1$ [37]

c/ Déterminer alors le reste modulo 37 de S.

Exercice N°2 (6 points)

Les deux parties sont indépendantes

Partie A/

Dans le plan orienté, on considère un triangle rectangle ABC de sens direct tel que AB = 2AC.

Soient D et D' deux droites parallèles passant respectivement par B et C et ne contenant aucun des côtés du triangle ABC.

Soit Δ la droite passant par A et perpendiculaire à D et D'.

La droite Δ coupe les droites D et D' respectivement en I et J.

1/ Soit S la similitude directe qui transforme A en B et C en A.

a/Déterminer l'angle et le rapport de S.

b/ Soit Ω le centre de S. Montrer que Ω est le projeté orthogonal de A sur (BC)

2/a/Déterminer S(D') et $S(\Delta)$

b/ En déduire S(J)

c/ Montrer que le cercle de diamètre [IJ] passe par $\Omega.\,$

Partie B/

On considère le plan complexe P muni d'un repère orthonormé (O, \vec{u}, \vec{v}) direct. Soit M un point d'affixe z. On désigne par S_1 la similitude directe qui au point M associe le point M_1 d'affixe z_1 =(1+i)z+2+3i

et par S_2 la similitude directe qui au point M associe le point M_2 d'affixe z_2 =(1-i)z -2+2i

1/ a/ Donner les éléments caractéristiques de chacune des deux similitudes S_1 et S_2 .

b/ Caractériser $S_1 \circ S_\Delta$ où Δ est la droite d'équation : x+2y-1=0

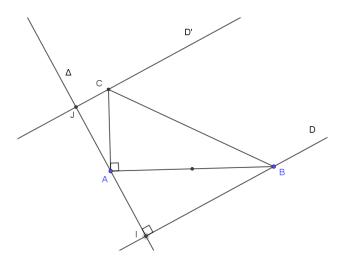
c/ Montrer que $S_2 \circ S_1$ est une homothétie dont on précisera le rapport et le centre J.

2/ Montrer que l'application f qui envoie M_1 en M_2 est une rotation dont on précisera le centre Ω et l'angle.

3/ Soit I le milieu de [M₁M₂]

a/ Caractériser la transformation t qui transforme M en I.

b/ Montrer que si M_1 est distinct de Ω alors les droites (ΩI) et (M_1M_2) sont perpendiculaires.



Exercice N°3

(7 points)

On considère la fonction f définie sur $[0,+\infty[$ par : $\begin{cases} f(x) = \frac{x}{x-\ln x} & \text{si } x > 0 \\ f(0) = 0 \end{cases}$

Partie A

1/ Montrer que $\forall t > 0$, on a : $\ln t \le t - 1$

2/ a/ Montrer que f est continue à droite en 0.

b/ Etudier la dérivabilité de f à droite en 0. Interpréter.

c/ Calculer $\lim_{x\to +\infty} f(x)$ 3/ Calculer f'(x) pour tout x > 0 et dresser le tableau de variations de f.

4/ a/ Ecrire l'équation de la tangente (T) à C_f au point d'abscisse 1.

b/ Tracer (T) et C_f.

Partie B

On désigne par F la fonction définie sur $]0,+\infty[$ par $F(x)=\int_1^x \frac{t}{t-\ln t} dt$

1/ Etudier le sens de variation de F.

2/ Déterminer le signe de F(x) suivant les valeurs de x.

3/ a/Montrer que $\forall t \in]0,1]$, on $a: 0 \le \frac{t}{t-lnt} \le t$

b/ En déduire que $\forall x \in]0,1], \frac{x^2-1}{2} \le F(x) \le 0$

c/Montrer que la fonction F admet une limite ℓ à droite en 0 et que $\ell \in [-1/2, 0]$

4/a Montrer que $\forall x \in [1,+\infty[, f(x) \ge 1]$

b/ En déduire $\lim_{x\to +\infty} F(x)$

5/ a/ Soit x > 0, calcular $\int_1^x (1 + \ln t) dt$ et $\int_1^x \left(1 + \frac{\ln t}{t}\right) dt$

b/ Montrer que, pour $t \ge 1$, on a : $\frac{t}{t-lnt} \le 1 + lnt$

c/ En déduire que $\forall x \ge 1$, $F(x) \le x \ln x$

d/Montrer que $\forall x \ge 1$, $x + \frac{(\ln x)^2}{2} - 1 \le F(x)$

e/ Donner une interprétation géométrique de $J = \int_1^e \frac{t}{t-\ln t} dt$

Donner un encadrement de J.

Exercice N°4

(3 points)

1/ On pose $I = \int_0^{\frac{\pi}{4}} \frac{\cos(x)}{\cos(x) + \sin(x)} dx$ et $J = \int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\cos(x) + \sin(x)} dx$

a/Calculer I + J et I - J

b/En déduire I et J

2/ On pose K = $\int_0^{\frac{\pi}{4}} \frac{x\cos(x)}{(1+\sin(x))^2} dx$. En intégrant par parties, montrer que K = $2 - \sqrt{2} - \frac{\pi}{2(2+\sqrt{2})}$

3/ Pour $n \in IN$, on pose $A_n = 0! + 1! + 2! + 3! + 4! + ... + n!$

En utilisant la congruence modulo 8, montrer que A_n est un carré parfait si et seulement si n = 0 ou n = 2.