L.P. Kairouan

Le: 03 / 12 /2019

Devoir de synthèse $N^{\circ}1$

Durée: 3heures

Prof: Chouihi

Classe: 4M₂

Exercice N°1

(4 points)

Soit f la fonction définie sur]-1, $+\infty$ [par $f(x) = \frac{x}{\sqrt{x+1}}$ et C sa courbe dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1/a) Dresser le tableau de variations de f.
 - b) Donner une équation de la tangente Δ à C au point d'abscisse 0 puis tracer Δ et C.
- 2/ Soit g la fonction définie sur $[0, +\infty[$ par $g(x) = \frac{1}{\sqrt{x+1}}$
 - a) Montrer que pour tout $x \in [0, +\infty[$, $\frac{-1}{2} \le g'(x) \le 0$.
 - b) En utilisant le théorème des accroissements finis, montrer que : Pour tout $x \in [0, +\infty[$, $1 \frac{x}{2} \le \frac{1}{\sqrt{x+1}} \le 1$
 - c) En déduire que : Pour tout $x \in [0, +\infty[, x \frac{x^2}{2} \le f(x) \le x]$
- 3/ Soit (U_n) la suite réelle définie sur IN* par $U_n = \sum_{k=1}^n f(\frac{k}{n^2})$
 - a) Montrer que pour tout entier k, $1 \le k \le n$, $\frac{k}{n^2} \frac{1}{2n^2} \le f\left(\frac{k}{n^2}\right) \le \frac{k}{n^2}$
 - b) Montrer que pour tout $n \ge 1$, $\frac{1}{2} \le U_n \le \frac{n+1}{2n}$
 - c) En déduire la limite de la suite (U_n).

Exercice N°2

(4 points)

Dans le plan orienté on considère un carré ABCD de centre O et de sens direct.

On désigne par I le milieu du segment [AB] ; J le milieu du segment [AD] et K le milieu du segment [BC]. Soit f une isométrie qui transforme A en D et D en C et dont l'ensemble des points invariants n'est pas vide.

- 1) a) Montrer que f admet un unique point invariant.
 - b) Caractériser alors f.
- 2) Soit g l'isométrie sans point fixe qui transforme A en D et I en J.
 - a) Montrer que g(B) = A.
 - b) Montrer que g est une symétrie glissante dont on déterminera les éléments caractéristiques.
- 3) On pose E = g(K).
 - a) Montrer que $E \in (AI)$.
 - b) Prouver que A est le milieu du segment [EI].
- 4) On pose $\varphi = g^{-1}$ of
 - a) Déterminer $\phi(I)$ et $\phi(A)$ puis caractériser ϕ .
 - b) Déterminer l'ensemble Γ des points M du plan vérifiant f(M) = g(M).

Exercice N°3

(5 points)

N.B: Les cinq questions de cet exercice sont indépendantes!

1/ Déterminer les valeurs des entiers naturels n tels que : $7^{n+1} - (n+1) \cdot 7^n - 1 \equiv 0 \pmod{4}$

2/ Montrer que pour tout entier x on a : $x^3 \equiv x \pmod{3}$ et déduire que : $xy(x^2 - y^2) \equiv 0 \pmod{3}$ $\forall (x,y) \in \mathbb{Z}^2$

3/ Résoudre dans l'ensemble Z des entiers relatifs, l'équation : $x^3 + 5x + 2 \equiv 0 \pmod{8}$

4/ Montrer que pour tout entier naturel n : $2 \times 7^{2n+1} + 3^{n+2}$ est divisible par 23.

5/Montrer que pour tout entier a : si a = 1 (mod 10) alors $a^{10} = 1 \pmod{100}$

Exercice N°4 (4 points)

Soit f l'application qui à tout nombre complexe z associe z' tel que : z' = f(z) = i + $\frac{2}{\bar{z}+i}$.

On désigne par T l'application du plan complexe privé du point A(i) dans le plan complexe qui à tout point M(z) associe le point M'(z').

1/a) Calculer f(1) et f(2 + i)

b) Résoudre, dans C, l'équation : f(z) = 0

2/ Calculer $arg[(z'-i)(\bar{z}+i)]$. Que peut-on déduire pour les points A, M et M'?

3/ Exprimer l'affixe z'' de M'' = ToT(M). Que peut-on conclure pour T?

4/ On désigne par \mathscr{C} l'ensemble des points invariants par T.

a) Montrer que $M \in \mathscr{C}$ si et seulement si $AM = \sqrt{2}$

b) Caractériser géométriquement %.

5/ Dans cette question on suppose que $z=1+i+e^{i\theta}$, où θ est un nombre réel et on désigne par B le point d'affixe 1+i.

a) Quelle est la courbe Γ décrite par le point M, d'affixe z, lorsque θ décrit] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [?

b) Montrer que : $z' = 1 + i\left[1 + \tan\left(\frac{\theta}{2}\right)\right]$. A quelle courbe Γ' appartient le point M' d'affixe z'?

Exercice N°5 (3 points)

N.B : Les deux questions de cet exercice sont indépendantes !

1/ Soit a et b deux réels tel que : ab > 0.

Soit f une fonction continue sur [a,b] et dérivable sur]a,b[.

En appliquant le théorème de Rolle à une fonction convenablement choisie montrer qu'il existe $c \in]a,b[$ tel

que:
$$\frac{f(b)-f(a)}{b^3-a^3} = \frac{f'(c)}{3c^2}$$

2/ z et z' sont deux nombres complexes non nuls. Montrer l'équivalence suivante :

$$|z + z'| = |z| + |z'| \iff arg(z) \equiv arg(z') [2\pi]$$