Classe 4ième Maths

Devoir de Contrôle 3

Année Scolaire 2022-2023

Date: 28-04-2023 de l'éducation de Sfax 2

Mrs: Zaghdane Hichem - Bouzid Hassen

Lycée : Pilote sfax 2

Direction Régionale

Exercice 1

5 pts

On considère dans \mathbb{Z}^2 l'équation (E) : 143 u-840 v=1

1) a :Vérifier que le couple (47; 8) est une solution de (E).

b : Déduire les solutions de (E) dans \mathbb{Z}^2 .

c : Déterminer les inverses de 143 modulo 840 .

2) Soit $n \in \mathbb{N}^*$ tel que : $n \land 899 = 1$.

a :Montrer que $n \wedge 29 = 1$ et $n \wedge 31 = 1$.

b : Déduire que : $n^{840} \equiv 1 \mod(899)$.

3) Déterminer un entier naturel n tels que $100 \le n \le 1000$ et $n^{143} \equiv 1 \ mod(899)$.

Exercice 2

5 pts

Soit f une fonction continue sur \mathbb{R} telle que : $\forall x \in \mathbb{R}$; $f(x) = -x + 2 + \int_0^{3x} f\left(\frac{1}{3}t\right) dt$

1)Montrer que f est dérivable sur $\mathbb R$ et qu'elle est solution de l'équation différentielle ($\mathsf E$) : $\mathsf y'=3\mathsf y-1$.

2)a : Résoudre l'équation (E).

b : Déduire l'expression explicite de f .

3) Déterminer l'ensemble des fonctions g deux fois dérivables sur $\mathbb R$ tels que :

$$g(0) = 2$$
, $g'(0) = 5$ et $g'' - 9g + 3 = 0$.

10 pts

❖ Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = \frac{e^x}{1+e^{-x}}$

 ${\mathcal C}$ est la courbe de f selon un repère orthonormé (0 ; $\vec{\imath}$; $\vec{\jmath}$) « unité graphique 2cm »

1) a : Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.

 ${\sf b}$: Dresser le tableau de variation de f .

c : Tracer ${\mathcal C}$ en précisant la demi - tangente à ${\mathcal C}$ au point d'abscisse 0.

2) a :Calculer $A = \int_0^{\ln 2} f(x) dx$.

b : En déduire l'aire en cm² de la partie fermée du plan limitée par ${\mathcal C}$,

l'axe des ordonnés et la droite $y = \frac{4}{3}$.

- ❖ Soit $n \in IN$ et F_n la fonction définie sur \mathbb{R}_+ par : $F_n(x) = \int_0^x \frac{e^t}{1 + e^{-nt}} dt$
 - 1) Justifier que $\forall t \in IR_+ : \frac{e^t}{1+e^{-nt}} \ge \frac{e^t}{2}$. En déduire $\lim_{x \to +\infty} F_n(x)$.
 - 2) a : Montrer que F_n est une bijection de \mathbb{R}_+ sur \mathbb{R}_+ .
 - b : Déduire que l'équation $F_n(x)=1$ admet une unique solution U_n dans \mathbb{R}_+ .
 - c : Calculer U_0 .
 - 3) a : Montrer que pour $n \in IN$ et pour tout $x \in \mathbb{R}_+$ on a : $F_n(x) \leq F_{n+1}(x)$.
 - b : Déduire que la suite (U_n) $_{n\in IN}$ est décroissante puis justifier qu'elle est convergente .
 - 4) a :Montrer que $\forall n \in IN$ on a : $e^{U_n} 2 = \int_0^{U_n} \frac{e^{(1-n)t}}{1+e^{-nt}} dt$.
 - b : Déduire que $\forall n \in IN^* : 0 \le e^{U_n} 2 \le \frac{e^{U_n}}{n}$ puis déterminer $\lim_{n \to +\infty} U_n$.
 - 5) a :Soit $n \in IN^*$,En utilisant une intégration par parties montrer que :

$$n(e^{U_n}-2) = \ln(2) - e^{U_n} \cdot \ln(1 + e^{-nU_n}) + \int_0^{U_n} e^t \ln((1 + e^{-nt})) dt$$

- b: Justifier que $\forall t \in \mathbb{R}_+$ on a: $\ln(1+t) \leq t$.
- c :Déduire que $\lim_{n\to+\infty} n(e^{U_n}-2) = \ln (2)$.
- d :Montrer que $\lim_{n\to+\infty} n(U_n \ln(2)) = \ln(\sqrt{2})$.