

DEVOIR SYNTHESE n°3

27/05/2021. (8h→12h)

SMAALI

Ex.

Montrer que:

<u>I.</u> (8)

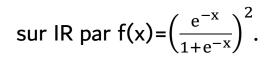
(1)

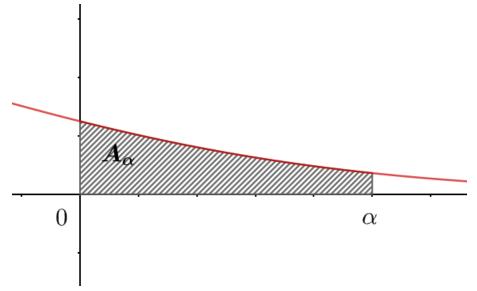
 $\frac{\ln\left(1+e^{\frac{1}{x}}\right)}{\mathbf{v}^2} = 0 \qquad \text{et} \quad \lim_{x \to +\infty} \ x^2\left(e^{\frac{1}{x}}-e^{\frac{1}{x+1}}\right) = 1.$

<u>2</u>

la figure suivante représente la courbe de la fonction f définie

(1)





 A_{α} désigne l'aire de la partie hachurée du plan limitée par la courbe de f; l'axe des abscisses et les droites d'équations x=0 et $x=\alpha$; ($\alpha>0$).

Montrer que : $\lim_{\alpha \to +\infty} A_{\alpha} = \ln 2 - \frac{1}{2}$

3

(1)

La loi de probabilité d'une variable aléatoire X est donnée par ce tableau:

Xi	1	-1	2
$p(X=x_i)$	Ln(a)	Ln(b)	Ln(c)

Où a, b et c sont, dans cet ordre, trois termes consécutifs d'une suite géométrique strictement positive

Sachant que l'espérance de X est 2,

Montrer que : p(X>0) = 2/3.

<u>4</u>

(2,5)

1)Montrer que l'ensemble des solutions dans $\mathbb Z$ de

l'équation (E) : $x^2-4x+3 \equiv 0 \pmod{13}$

est: $\{1+13k; k \in \mathbb{Z}\} \cup \{3+13k'; k' \in \mathbb{Z}\}$

2) Dans le plan rapporté à un repère orthonormé $(0, \overrightarrow{OI}, \overrightarrow{OJ})$, on donne la droite $\Delta: 3x+4y-5=0$

a. Pour x et y deux entiers relatifs.

Montrer que : si $M(x, y) \in \Delta$ alors $x \equiv 3 \pmod{4}$

Et Déduire l'ensemble \mathcal{Z} des points M de Δ dont les coordonnées sont des entiers relatifs.

b. Quel est l'ensemble \mathcal{F} des points de \mathcal{E} dont le carré de la distance à O est un multiple de 13 ?

<u>5</u>

Le plan P est rapporté à un repère orthonormé direct $(0, \overrightarrow{OI}, \overrightarrow{OJ})$.

(2,5)

Soit r l'application de P \to P qui à tout point M (x, y) associé le point M'(x',y') tel que : $\begin{cases} x'=1-y\\ y'=x \end{cases}$

- 1) Donner la transformation complexe de r, et déduire que r est une rotation dont on précisera le centre A et une mesure de son angle.
- **2)** Soit $f = roS_{(0,\vec{J})}$.

Montrer que f est une symétrie glissante que l'on caractérisera.

<u>Ex</u>

(4)

A/ On dispose d'un dé tétraédrique parfait et bien équilibré (à quatre faces marquées par les lettres : A ; G ; G ; G) et de deux urnes U_1 et U_2 contenant des boules indiscernables au toucher :

- Dans U₁, deux boules marquées : -1 ; 0.
- Dans U₂, quatre boules marquées : -1;0;1;2.

Une épreuve consiste à lancer le dé (on s'intéresse à la face cachée du dé) puis tirer successivement et sans remise deux boules, de U_1 si le dé donne A et de U_2 s'il donne G.

On définit ainsi, sur IN^* une suite (t_n) de la façon suivante :

- La lettre donnée par le dé indique la nature de la suite (t_n) : si elle est A ; la suite (t_n) est <u>Arithmétique</u> et si elle est G ; la suite (t_n) est <u>Géométrique</u>.
- La 1^{ère} boule tirée désigne <u>le premier terme</u> t₁ de (t_n).
- La 2^{ème} boule tirée désigne <u>la raison</u> de (t_n).

On considère les évènements :

M « avoir une suite Géométrique »

N « avoir une suite Convergente »

- Déterminer les probabilités : p(M); $p(N \mid \overline{M})$ et $p(\overline{N} \mid M)$ Puis tracer l'arbre de probabilité correspondante et déduire p(N).
- Montrer que la probabilité qu'une suite Divergente soit Géométrique est égale à $\frac{2}{3}$.
- **B/** l'épreuve précédente est considérée comme étant un jeu :
 - Si (t_n) est une suite Arithmétique, on perd 1 DT.
 - Si (t_n) est une suite Géométrique, on gagne t₁ E(e^{t₁}) DT.
 Où E(a) désigne la partie entière du réel a.
 - 1) Soit X la variable aléatoire donnant le gain algébrique.
 - a. Déterminer la loi de probabilité de X.
 - b. Quel est le gain moyen du jeu?
 - 2) HOSNI répète le jeu n fois de suite (n ∈ IN*), de manière identique et en remettant à chaque fois les boules tirées dans leurs urnes.
 - a. Pour n=3 ; Quelle est la probabilité qu'il perdrait 2 fois "1DT"?
 - **b.** Pour $n \ge 5$; Montrer que la probabilité qu'il perdrait exactement 5 fois de suite "1DT" est : $p_n = \left(\frac{n-4}{4^n}\right) \cdot 3^{n-5}$.
 - c. Donner $\lim_{n\to+\infty} p_n$.

Ex

<u>**5.**</u> (4)

Soit la fonction f définie sur [1, + ∞ [par $f(x) = \frac{\sqrt{\ln x}}{x}$; et on désigne par (C) sa courbe représentative dans un repère orthonormé $(0,\vec{1},\vec{j})$.

1)

- a. Etudier la dérivabilité de f à droite en 1, et interpréter graphiquement le résultat obtenu.
- b. Dresser le tableau de variation de f.
- c. Tracer (C₁) dans le repère $(0, \vec{1}, \vec{j})$. Unité : 4cm.
- 2) Soit un réel a>1.

Déterminer en fonction de a, l'aire I(a) de la partie du plan délimitée par : la courbe (C), l'axe $(0,\vec{1})$ et les droites d'équations respectives x=1 et x=a.

Pour
$$n \ge 0$$
, On pose $S_n = \frac{\sqrt{\ln\left(1 + \frac{k}{2n}\right)}}{k + 2n}$

a. Montrer que pour tout $k \in \{0, 1, ..., n-1\}$; on a :

$$\frac{1}{2n} f\left(1 + \frac{k}{2n}\right) \le \int_{1 + \frac{k}{2n}}^{1 + \frac{k+1}{2n}} f(x) dx \le \frac{1}{2n} f\left(1 + \frac{k+1}{2n}\right)$$

- **b.** En déduire que : $S_n \frac{1}{2n} f\left(\frac{3}{2}\right) \le I\left(\frac{3}{2}\right) \le S_n$
- c. Calculer $\lim_{n\to+\infty} s_n$.

<u>4.</u>

(4)

Soit f la fonction définie sur IR par : $f(x) = \frac{x}{\sqrt{e^{x-1}}}$, et (C) sa courbe représentative dans un repère orthonormé $(0,\vec{1},\vec{j})$.

1)

- a. Dresser le tableau de variation de f.
- **b.** Montrer que la courbe (C) admet un point d'inflexion dont on précisera les coordonnées.
- c. Tracer (C)
- **d.** Vérifier que pour tout $x \in [0, 1]$ on a $f(x) \in [0, 1]$.
- Pour tout n ∈ IN*, on pose :

$$u_n = \frac{1}{n! \ 2^{n+1}} \int_0^1 \frac{x^n dx}{\sqrt{e^{x-1}}}$$
 et $v_n = \sum_{k=0}^{k=n} \frac{1}{k! \ 2^k}$

- a. Calculer u₁; et déduire l'aire de la partie du plan limitée par
 - (C), l'axe $(0,\vec{1})$ et les droites d'équations x=-1 et x=1.
- **b.** Montrer que pour tout $n \in IN^*$: $u_{n+1} = u_n \frac{1}{(n+1)! \ 2^{n+1}}$
- c. Montrer que pour tout $n \in IN^*$: $v_n = \sqrt{e} u_n$
- **d.** Montrer que pour tout $n \in IN^*$: $0 \le u_n \le \frac{1}{n^2 (n-1)! 2^{n+1}}$
- e. Déduire : $\underset{n \to +\infty}{lim} v_n$