

Devoir de Synthèse n°2 28-02-2022. (4h) SMAALI.

Exercice n°1. (2.25 pts

Questions indépendantes :

1) Pour tout neIN*, on pose : $I_n = \int_0^3 2 + 4x + 6x^2 + \cdots + 2(n+1)x^n \quad dx$.

Choisir en justifiant, la valeur exacte de, In:

a.
$$I_n = 3^n - 3$$

b.
$$I_n = 3^{n+1} - 3$$

c.
$$I_n = 3^{n+2} - 3$$

2) Soit f la similitude indirecte d'écriture complexe : $\mathbf{z}' = 2\mathbf{i} \, \overline{\mathbf{z}} - \mathbf{1} - \mathbf{i}$ et le point I (1+i).

Choisir en justifiant la proposition correcte :

- **a.** f est de rapport 2, de centre I et d'axe (OI).
- **b.** f est de rapport 2, de centre I et d'axe Δ : x+2y-3=0.
- c. f est de rapport 2, de centre I et d'axe Δ : x-2y-3=0.
- 3) Pour tout $n \in IN^*$, on a: $(n+1)^n \equiv 1 \pmod{n^2}$.
 - a. VRAI.
 - b. FAUX.
 - c. Peut-être.

Exercice n°2. (7.25 pts)

Partie A.

Soit f la fonction définie sur IR par :
$$\begin{cases} f(x) = Ln(x^2+1) & \text{ si } x < 0 \\ f(x) = x \, Ln(x+1) & \text{ si } x \geq 0 \end{cases}$$

On désigne par (C) sa courbe représentative dans un repère orthonormé $(O, \vec{\iota}, \vec{\jmath})$.

- 1) a. Vérifier que f est continue en 0.
 - **b**. Montrer que f est dérivable en 0.
- 2) Soit g la fonction définie sur]0, $+\infty$ [par : $g(x) = Ln(x+1) + \frac{x}{x+1}$
 - a. Dresser le tableau de variations de g.
 - **b.** Déduire le signe de g(x) pour tout x>0.

- 3) a. Vérifier que pour tout x>0, f'(x)=g(x).
 - b. Dresser le tableau de variation de f sur IR.
- 4) a. Etudier la position de (C) par rapport à la droite Δ : y=x sur [0, + ∞ [.
 - **b.** Tracer (C) et Δ .
- 5) Soit h la restriction de f à $[0, +\infty]$.
 - **a.** Montrer que h réalise une bijection de $[0, +\infty]$ [sur $[0, +\infty]$].
 - **b.** Tracer la courbe (Γ) de h⁻¹ dans le même repère que (Γ).

Partie B.

Pour tout n∈IN*, on considère les fonctions F_n et G_n définies sur IR+ par,

$$F_n(x) = \int_0^x t^n \, Ln(t+1) \, \, dt \, \, \, et \, \, G_n(x) = \int_0^x \frac{t^{n+1}}{t+1} \, \, \, dt \, , \, \, et \, \text{on pose Un} \, = \, (n+1) F_n(1).$$
 1)

- a. Etudier les variations de la fonction $\phi: x \mapsto G_n(x) \frac{x^{n+2}}{n+2}$ sur IR_+
- **b.** Déduire que pour tout $x \ge 0$ on a, $G_n(x) \le \frac{x^{n+2}}{n+2}$
- c. Montrer que pour tout $x \ge 0$ on a, $G_n(x) \ge 0$. En déduire $\lim_{n \to +\infty} G_n(1)$
- 2) Soit H_n la fonction définie sur IR_+ par : $H_n(x) = x^{n+1}Ln(x+1) G_n(x)$
 - a. Calculer $H_n'(x)$ pour tout $x \ge 0$.
 - b. En déduire que pour tout $n \in IN^*$ on a, $Un = Ln(2) G_n(1)$; et calculer $\lim_{n \to +\infty} U_n$
- 3) a. Montrer que pour tout $n \in IN^*$ et pour tout $x \in IR_+$ on a :

$$1 - x + x^2 - x^3 + \dots + (-1)^n x^n = \frac{1}{x+1} + (-1)^n \frac{x^{n+1}}{x+1}.$$

- b. En déduire que $x \frac{x^2}{2} + \frac{x^3}{3} \dots + \frac{(-1)^n x^{n+1}}{n+1} = Ln(x+1) + (-1)^n G_n(x)$.
- c. Montrer que pour tout $n \in IN^*$ on a : $Ln(2) \sum_{k=0}^n \frac{(-1)^k}{k+1} = (-1)^{n+1}(Ln(2) U_n)$
- d. En déduire la valeur de $\lim_{n\to+\infty} 1 \frac{1}{2} + \frac{1}{3} \cdots \frac{(-1)^n}{n+1}$

Exercice n°3. (3 pts

Le but de l'exercice est de montrer que pour tout entier naturel n on ne peut pas écrire $2^n + 1$ sous forme de p^3 avec p un nombre premier strictement supérieur à 3.

Pour cela on suppose par l'absurde qu'il existe un entier naturel premier p Strictement supérieur à 3 tel que $2^n + 1 = p^3$.

- 1) a/ Montrer que si <u>n est impair</u> alors $2^n + 1 \equiv 0 \pmod{3}$ b/ Déduire que p=3; conclure.
- 2) On suppose que <u>n est pair, donc n=2k avec k \in IN</u>.
 - a/ Montrer que si <u>k est impair</u> alors $2^n + 1 \equiv 0 \pmod{5}$
 - **b**/ Déduire que si k est impair alors p=5.
 - c/ Montrer alors que si k est impair alors 31 divise 2^n ; Conclure.

- 3) On suppose que <u>k est pair</u>, alors n=2(2q) avec $q \in IN$.
 - a/ Déterminer dans ce cas les restes possibles de $2^n + 1$ modulo 7.
 - **b**/ Pour un entier m; quels sont les restes possibles de m³ modulo 7? **c**/ Conclure.

Exercice n°4. (3 pts

On considère la suite (u_n) définie sur IN par :

 $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 10u_n + 21$.

- 1) Calculer u₁, u₂ et u₃.
- 2) a) Démontrer par récurrence que, pour tout entier naturel n, $3u_n = 10^{n+1} 7$.
 - b) En déduire, pour tout entier naturel n, l'écriture décimale de un
- 3) Montrer que u₂ est un nombre premier.
- 4) On se propose maintenant d'étudier la divisibilité des termes de la suite (u_n) par certains nombres premiers.

Démontrer que, pour tout entier naturel n, u_n n'est divisible ni par 2, ni par 3, ni par 5.

- 5) a) Démontrer que, pour tout entier naturel n, $3u_n \equiv 4 (-1)^n$ (modulo 11).
 - b) En déduire que, pour tout entier naturel n, un n'est pas divisible par 11.
- 6) a) Démontrer que $10^{16} \equiv 1$ (modulo 17).
 - b) En déduire que, pour tout entier naturel k, u_{16k+8} est divisible par 17.

Exercice n°5. (4.5 pts

Dans le plan orienté, on considère un triangle ABC rectangle en A et tel que $(\widehat{CA},\widehat{CB}) = \frac{\pi}{6}[2\pi]$.

Soit D le point du plan tel que $\overrightarrow{AD} = \overrightarrow{KC}$ et soit K le symétrique de B par rapport à A. On désigne par O, I et J les milieux respectifs des segments [AC], [BC] et [BD]

- 1) Soit S la similitude directe du plan telle que S(D) = B et S(I) = K
 - a) Déterminer le rapport et l'angle de S.
 - b) Montrer que C, est le centre de la similitude S
- 2) Soit A' le symétrique de D par rapport à C
 - a) Montrer qu'il existe un seul antidéplacement f tel que f(D) = A et f(A) = A'.
 - b) Montrer que f est une symétrie glissante dont on déterminera l'axe et le vecteur
 - c) Montrer que f(B) = C
- 3) On pose $g = f \circ S$
 - a) Montrer que g est une similitude indirecte dont on précisera le rapport.
 - **b)** Déterminer g o g(D)
 - c) Construire le centre W de g et son axe D.
- 4) On pose $h=g^{-1}$ of o g
 - a) Vérifier que h=S⁻¹o g
 - b) Montrer que h est une symétrie glissante que l'on caractérisera.