EXERCICE N°1.

A/ Donner la bonne réponse avec justification

$$1) Soit I = \int_0^{\pi} x \sin t \ dt$$

a)
$$I = \pi \sin i$$

b)
$$I = 2x$$

c)
$$I = \pi \sin x$$

2) Soit
$$J = \int_{-1}^{1} \frac{x^5}{\sqrt{1+x^2}} dx$$

a)
$$J = 1$$

b)
$$I = -1$$

c)
$$J = 0$$

3) La fonction $x \mapsto \int_0^x \frac{\sin t}{1+t} dt$ est dérivable sur :

a)
$$\mathbb{R}\setminus\{-1\}$$

b)
$$]-1,+\infty[$$

c)]
$$-\infty$$
, -1 [

B/ Répondre par Vrai ou Faux en justifiant la réponse.

1) Soit f une fonction définie sur \mathbb{R} et $\forall x \in \mathbb{R}$; $f(x) \leq 0$ alors $\forall a \in \mathbb{R}$ on a $\int_a^{a^2} f(x) dx \leq 0$

2) La fonction F définie par :
$$F(x) = \int_0^{\sqrt{1-x^2}} \frac{2}{1+t^2} dt$$
 est dé e sur [0,1]

3)
$$\int_{-1}^{1} \frac{1}{x^2} dx = -2$$

EXERCICE N°2.

Les élèves de terminale de un lycée sont répartis selon leurs spécialités suivant les répartitions ci-dessous

Sciences Techniques	Sciences expérimentales	Mathématiques
20%	35%	45%

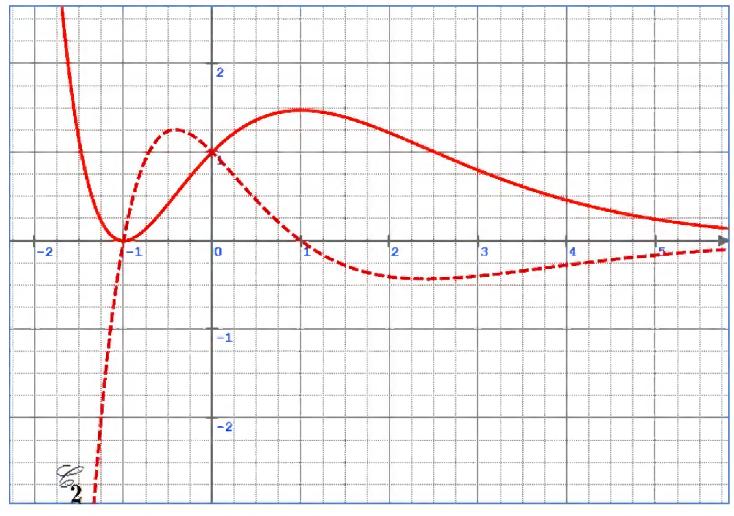
Ces élèves ont choisit entre deux options seulement Espagnole et Allemand selon les données ci-dessous

- * 70% des Matheux ont choisit l'option Espagnole.
- * 60% des Scientifiques ont choisit l'option Espagnole.
- * 75% des Techniciens ont choisit l'option Allemand.

On choisit un élève au hasard et on considère les événements suivants :

M: << l'élève est en spécialité maths >>

T: << l'élève est en spécialité Sciences Techniques >>


E: < l'élève a choisit l'option Espagnole >>

- 1) traduire les données de l'exercice par un arbre de probabilités.
- a. Calculer p(M); p(E/M); p(M∩E) et p(T∩E).
 - b. Calculer p(E).
 - c. Sachant que l'élève choisi est en option Espagnole quelle est la probabilité qu'il soit en spécialité maths ?
 (On donnera les résultats arrondi à 10⁻³ près)

EXERCICE N°3.

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (ax^2 + bx + c)e^{-x}$ où a, b et c sont des réels. On donne les deux courbes \mathscr{C}_i et \mathscr{C}_2 représentatives des fonctions f et f' où f' désigne la fonction dérivée de f (Voir page 4).

- Préciser, avec justification, la courbe correspondante à chacune des deux fonctions f et f'.
- 2) A l'aide des courbes \mathcal{C}_1 et \mathcal{C}_2 , déterminer les réels a, b et c.
- 3) Dresser le tableau de variation de f.
- 4) Déterminer, avec justification et sans calcul, le nombre de points d'inflexions éventuels pour la courbe représentative de f.
- 5) Déterminer graphiquement l'aire A de la région du plan limitée par la courbe représentative de f' et les droites d'équations y = 0, x = -1 et x = 0.

