SECTION: SCIENCES EXPERIMENTALES

<u>E.P :Bechri</u> <u>4.S :2008/2009</u> Niveau :4Sc-Exp

Devoir de synthèse N°1

<u>Durée :2h</u> <u>Date ;5/12/08</u> Prof :Lahmadi,A

Exercice Nº1

(3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Le condidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse

choisie . Aucune justification n'est demandée.

Une réponse correcte vaut 1 point, une réponse fausse ou l'abscence de réponse vaut 0 point.

1. Une solution de l'équation $2z + \overline{z} = 9 + i$ est	a. 3
· ·	b. i
	c. 3+i
2. Soit $z \in \mathbb{C}$ vérifiant $z + z = 2 + i$. L'écriture	a. $\frac{3}{4} - i$
algébrique de z est :	3
	b. $\frac{3}{4} + i$
	$e\frac{3}{4} + i$
3. Soit z un nombre complexe . $ z+i $ est égal à :	a. $ z +1$ b. $ z-1 $ c. $ \bar{z}+1 $
	b. $ z-1 $
	$\mathbf{c.} \vec{iz} + 1 $

Exercice N°2

(7 points)

Pour tout nombre complexe z , on définit : $P(z) = z^3 + 2(\sqrt{2} - 1)z^2 + 4(1 - \sqrt{2})z - 8$

- **1.** Calculer P(2). Déterminer une factorisation de P(z) par (z-2)
- **2.** Résoudre dans \mathbb{C} l'équation P(z) = 0.

On appelle z_1 et z_2 les solutions de l'équation autres que z_1 , z_1 ayant une partie imaginaire positive. Vérifier que $z_1+z_2=-2\sqrt{2}$. Déterminer le module et un argument de z_1 et de z_2 .

- **3. a.** Placer dans le plan ,muni d'un repère orthonormé direct $(O, \overrightarrow{U}, \overrightarrow{V})$ les points : A d'affixe 2 , B et C d'affixes respectives z_1 et z_2 , et I milieu de AB
 - **b.** Démontrer que le triangle OAB est isocèle. En déduire une mesure de l'angle $(\overrightarrow{U}; \overrightarrow{OI})$
 - f e. Calculer l'affixe z_I de I, puis le module de z_I .
 - **d.** Déduire des résultats précédents les valeurs exactes de $\cos \frac{3\pi}{8}$ et $\sin \frac{3\pi}{8}$.

ogir

Sigma

igmaths

0

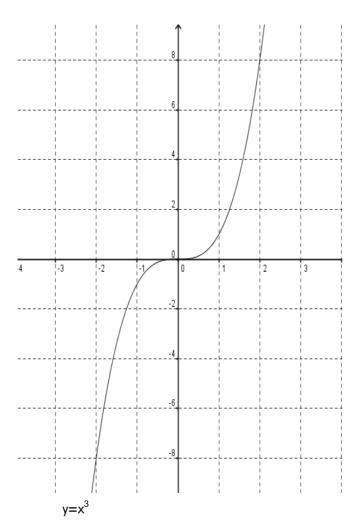
Sigmaths

 \odot

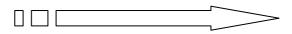
(0)

Soit l'équation **(E)** : $x^3 - 3x + 1 = 0$

 ${f 1}$. En utilisant la courbe d'équation $y=x^3$, indiquer comment on peut conjecturer le nombre de Solutions de l'équation (E). Localiser ces solutions sur le graphique ci – dessous



- **2.**On désigne par f la fonction définie sur \mathbb{R} par $f(x) = x^3 3x + 1$
 - Etudier les variations de f.
 - **b.** Montrer que l'équation **(E)** admet exactement trois solutions que l'on notera α_1 , α_2 et α_3 telles que : Sigmaths $\alpha_1 \langle \alpha_2 \langle \alpha_3 \rangle$
 - A l'aide d'une calculatrice , proposer des valeurs approchées à 10^{-3} près de $lpha_{_1}$, $lpha_{_2}$ et $lpha_{_3}$



(

On considère les suites $\ (U_n)$ et $\ (V_n)$ définies sur $\ \mathbb N$ par : $\begin{cases} U_0 = 1 & ; \quad V_0 = 2 \\ U_{n+1} = \frac{U_n + V_n}{2} & ; \quad V_{n+1} = \frac{U_{n+1} + V_n}{2} \end{cases} .$

1. Pour tout $n \in \mathbb{N}$, on pose : $d_n = V_n - U_n$

Pour tout $n \in \mathbb{N}$, on pose : $d_n = V_n - U_n$ Démontrer que la suite (d_n) est une suite géométrique dont on précisera la raison et le premier terme. En déduire une expression de d_n en fonction de n .

- **2.** Démontrer que les suites (U_n) et (V_n) sont adjacentes .
- **3.** Pour tout $n \in \mathbb{N}$, on pose $W_n = \sum_{p=0}^n (V_p U_p) = (V_0 U_0) + (V_1 U_1) + \dots + (V_n U_n)$
 - **a.** Donner l'expression de W_n en fonction de n .
 - **b.** Exprimer $\sum_{p=0}^{n-1}(U_{p+1}-U_p)$ en fonction de W_n , puis en fonction de U_n et de U_0 En déduire l'expression de $U_{\scriptscriptstyle n}$ en fonction de n .
 - Quelle est la limite de (U_n) ?

Bon Travai Sigmat

 $KKK'G \neq A5H \leftarrow G'H$?

0

0

(