

Exercice 1

Dans l'espace rapporté à un repère orthonormé, on considère l'ensemble (S)

des points M(x, y, z) tels que $x^2 + y^2 + z^2 - 2x - 4y + 4z + 8 = 0$.

Soit m un réel et P_m le plan d équation 2x - y + 2z + m = 0.

- 1) Montrer que (S) est une sphère dont on déterminera le centre et le rayon.
- 2) Etudier suivant les valeurs de m, la position de (S) et P_m .
- 3) Montrer que $(S) \cap P_4$ est un cercle dont on précisera le centre et le rayon.
- 4) Soit D la droite passant par le point A(2,1,1) et de vecteur directeur $\vec{u} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.
 - a) Montrer qu'une équation cartésienne du plan Q contenant la droite D et perpendiculaire à P_m est : x-2y-2z+2=0.
 - b) Montrer que Q est tangent à la sphère (S) en un point H dont on déterminera les coordonnées.

Exercice 2

Pour tout entier naturel non nul n, on pose $I_n = \int_1^e x^2 (\ln x)^n dx$.

- 1) A l' aide d' une integration par parties, calculer I_1 .
- 2) A l'aide d'une integration par parties, démontrer que pour tout entier naturel non nul $n:3I_{n+1}+(n+1)I_n=e^3$.
- 3) En déduire I_2 .
- 4) a) Démontrer que pour tout entier naturel non nul $n, I_n \geq 0$.
 - b) Déduire alors que pour tout entier naturel non nul n, $I_n \leq \frac{e^3}{n+1}$.
- 5) Déterminer alors $\lim_{n\to+\infty} I_n$.

Exercice 3

Soit f la fonction définie sur
$$\mathbb{R}$$
 par : $f(x) = \frac{e^x - 1}{e^x + 1}$

On désigne par $\mathscr C$ sa courbe représentative dans un repère orthonormé.

- 1) Montrer que f est impaire.
- 2) Vérifier que $\lim_{x\to +\infty} f(x) = 1$.
- 3) a) Montrer que f est dérivable sur $\mathbb R$ et que pour tout $x \in \mathbb R$, $f'(x) = \frac{2e^x}{(1+e^x)^2}$.
 - b) Drésser le tableau de variation de f.
- 4) Soit x un réel positif.
 - a) Montrer que $\forall t \in [0, x], 0 \le f'(t) \le \frac{1}{2}$.
 - b) En déduire alors que : $0 \le f(x) \le \frac{1}{2}x$.
- 5) a) Donner une équation de la tangente T à la courbe $\mathscr C$ au point d'abscisse 0.
 - b) Tracer la tangente T et la courbe \mathscr{C} .
- 6) a) Montrer que f admet une fonction réciproque notée g et préciser son domaine de définition D.
 - b) Montrer que pour tout $x \in D$, $g(x) = ln\left(\frac{1+x}{1-x}\right)$.
 - c) Tracer dans le même repère la courbe \mathscr{C} ' représentation graphique de g.
- 7) On désigne par A l'aire de la région du plan limitée par les courbes $\mathscr C$ et $\mathscr C'$ et les droites d'équations x=1 et y=1.
 - a) Vérifier que pour tout réel x, $f(x) = 1 \frac{2e^{-x}}{1 + e^{-x}}$.
 - b) En déduire alors que $A = -1 + 4 \ln \left(\frac{2e}{1+e} \right)$.