

Exercice 1

Pour chaque question, une seule réponse est correcte. On indiquera sur la copie le numéro de la question et la lettre correspondante à la réponse choisie. Aucune justification n'est demandée.

1) La suite de terme général $u_n = 3 + 2^n$ est :		
a) Une suite arithmétique	b) une suite géométrique	c) ni arithmétique ni géométrique
2) La suite de terme général $u_n = 3 \times 2^n$ est :		
a) Une suite arithmétique	b) une suite géométrique	c) ni arithmétique
		ni géométrique
3) La suite de terme général $u_n = 3 + 2n$ est :		
a) Une suite arithmétique	b) une suite géométrique	c) ni arithmétique
		ni géométrique
4) La suite (u_n) est géométrique de raison positif telle que $u_0 = 16$ et $u_4 = 1$.		
Le terme général $u_{\scriptscriptstyle n}$ est égale à :		
$a) 2^{4-n}$	$b) \ \frac{16}{\left(-2\right)^n}$	c) $16 - \frac{15}{4}n$

Exercice 2

Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 1$ et $u_{n+1} = \frac{1}{2}u_n + 1$ $(n \in \mathbb{N})$

- 1) Montrer que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2) On définit la suite (v_n) par : $v_n = u_n 2$ $(n \in \mathbb{N})$.
 - a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$.
 - b) Exprimer v_n et puis u_n en fonction de n.
 - c) On pose $S_n = u_0 + u_1 + ... + u_n$ et $T_n = v_0 + v_1 + ... + v_n$.

 Calculer T_n en fonction de n.

 En déduire S_n en fonction de n.

Exercice 3

Soit [AB] un segment tel que AB = 6 cm et C un point de [AB] tel que AC = 4cm.

 $\mathscr C$ le cercle de diamètre [AB] et $\mathscr C'$ le cercle de diamètre [AC].

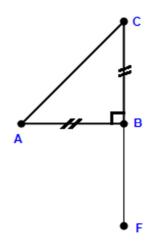
Une droite Δ passant par A et distincte de (AB), recoupe C et C' respectivement en B' et C'.

- 1) Faites une figure.
- 2) a) Quelle est la nature de chacun des triangles ABB' et ACC'?
 - b) En déduire que (BB') est parallèle à (CC').
- 3) Soit h l'homothétie de centre A telle que h(B) = C.
 - a) Déterminer le rapport k de cette homothétie.
 - b) Déterminer $h(\Delta)$ et h(BB'). En déduire h(B').
- 4) Soient O et O' les centres respectifs des cercles $\mathscr C$ et $\mathscr C'$.
 - a) Montrer que h(O) = O'
 - b) En déduire que $h(\mathcal{C}) = \mathcal{C}'$.
- 5) La tangente T au cercle $\mathscr C$ au point B coupe la droite Δ en D.

 Déterminer et construire h(D).

Exercice 4

Soit ABC un triangle direct rectangle et isocèle en B.


On note F le symétrique de C par rapport à B.

r la rotation directe de centre A et d'angle $\frac{\pi}{2}$.

- 1) Construire le point D image de B par la rotation r.
- 2) Montrer que r(F) = C.
- 3) Déterminer r((AB)) et montrer que r((BC)) = (CD).

 $(\underline{Indication}: L'image\ d'une\ droite\ par\ r\ est\ une\ droite$ $qui\ lui\ est\ perpendiculaire\ car\ r\ est\ une$ $rotation\ d'\ angle\ \frac{\pi}{2}\)$

- 4) a) Construire le point E image de C par r.
 - b) Montrer que D est le milieu du segment [CE].

