Devoir de synthèse n°l

Durée de l'épreuve: 2H

Classe: 4^{ième}Sc2

Prof: Dhaouadi Nejib

ID: DS0001

Exercice n°I

Soit la fonction f définie par :

$$\begin{cases} f(x) = 2 - \sqrt{x^2 - x} & si \ x \in] -\infty, 0[\\ f(x) = 1 + \frac{1}{\sqrt{1 + x^2}} & si \ x \in [0, +\infty[$$

- 1°) Montrer que f est continue en 0
- 2°) Etudier la dérivabilité de f en 0 et interpréter graphiquement le résultat obtenu
- 3°) a) Montrer que pour tout $x \in]0,+\infty[$ on a : $f'(x) = \frac{-x}{(1+x^2)\sqrt{1+x^2}}$
 - b) Dresser le tableau de variation de f
- 4°) Montrer que l'équation f(x) = x admet, dans $]0,+\infty[$, une solution unique $\alpha \in]1,5,1,6[$

Exercice n°2

Soient (u_n) et (v_n) les deux suites réelles définies par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{3u_n + 4v_n}{7} \end{cases} \qquad et \qquad \begin{cases} v = 20 \\ \forall n \in \mathbb{N}, \quad p_1 = \frac{u_n + 2v_n}{3} \end{cases}$$

Pour tout entier naturel n on pose $w_n = v_n - u_n$

- $1^\circ)$ a) Montrer que $(\mathit{W_n})$ est une suite géométrique dont on précisera la raison et le premier terme
 - b) Exprimer w_n en fonction de n
- 2°) Montrer que pour tout entier naturel n ; $u_n \leq v_n$
- 3°) a) Montrer que $(u_{\!\scriptscriptstyle n})$ est croissante et $(v_{\!\scriptscriptstyle n})$ décroissante
 - a) En déduire que les suites (u_n) et (v_n) sont adjacentes et qu'elles convergent vers la même limite L
- $4^\circ)$ On pose pour tout $\mathit{n}{\in}\,\mathbb{N}$, $t_{\scriptscriptstyle n}=7u_{\scriptscriptstyle n}+12v_{\scriptscriptstyle n}$
 - a) Montrer que (t_n) est une suite constante
 - b) En déduire alors la valeur de L

Sigmaths

0

Exercice n°3 (Bac Tunisien 2003 sections Sc&T)

Soit m un réel non nul

- 1°) Résoudre dans \mathbb{C} l'équation : $z^2 2iz (1 + m^2) = 0$
- 2°) Pour tout nombre complexe z, on pose :

$$f(z) = z^3 - 3iz^2 - (3 + m^2)z + i(1 + m^2).$$

- a) Vérifier que f(i)=0; en déduire une factorisation de f(z).
- b) Résoudre dans \mathbb{C} l'équation f(z)=0.
- 3°) Le plan complexe est rapporté à un repère orthonormé direct $(\vec{O,u,v})$ On considère les points A, M' et M" d'affixes respectives i, i+met i-m
 - a) Vérifier que A est le milieu du segment [M'M'].
 - b) Montrer que le triangle OM'M" est isocèle.
 - c) Déterminer les valeurs de m pour que le triangle OM'M" soit équilatéral.

Exercice n°4

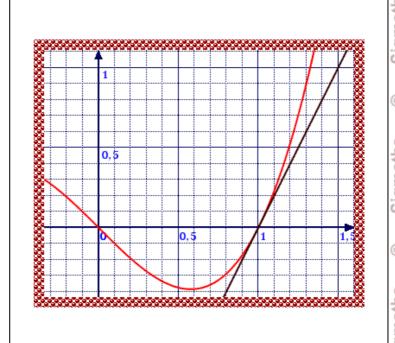
Pour chaque question, une seule des propositions données est correcte L'élève doit cocher une seule des réponses données pour chaque question 1 pt pour une bonne réponse, - 0,25 pt pour une réponse fausse.

0 pt dans le cas d'une réponse ambiguë ou absence de réponse Les notes pour cet exercice vont de 0 à 4.

1°) La courbe ci-contre est la

représentation graphique d'une fonction *f*

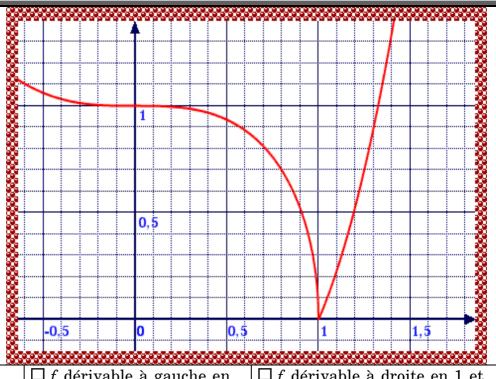
Déterminer f'(1)



 $\Box f'(1) = 0$ $\Box f'(1) = -2$ $\Box f'(1) = 2$

2°)

La courbe cicontre est la représentation graphique d'une fonction f



- ☐ f dérivable en 1
- \Box f dérivable à gauche en 1 et n'est pas dérivable à droite en 1
- $\Box f$ dérivable à droite en 1 et n'est pas érivable à gauche en 1

3°)Si (u_n) une suite réelle telle que pour tout entier naturel n non nul on a :

$$|u_n + 1| \le sin\left(\frac{1}{n}\right)$$
, alors:

- = (a_n) frest pas convergence = (a_n) converge ve
- \square (u_n) n'est pas convergente \square (u_n) converge vers \square \square (u_n) converge vers \square

 $4^\circ)Les$ racines quatrième de 16 sont de la forme :

- $\Box z_k = 2e^{i\frac{k\pi}{2}}$ $\text{avec } k \in \{0,1,2,3\}$
- $z_k = 2e^{i\frac{k\pi}{4}}$ $avec k \in \{0,1,2,3\}$
- $\Box z_k = \sqrt{2}e^{i\frac{k\pi}{2}}$ $\text{avec } k \in \{0,1,2,3\}$

(0)

igmaths

Sigmaths

Correction Du Devoir de synthèse n°I

ID=DS4S0001

Correction de l'exercice n°I

1°)
$$\lim_{\delta \to 0^{+}} f = \lim_{\chi \to 0^{-}} 2 - \sqrt{\chi^{2} - \chi} = 2$$

 $\lim_{\delta \to 0^{+}} f = \lim_{\chi \to 0^{+}} 1 + \frac{1}{\sqrt{1 + \chi^{2}}} = 2$ $\Rightarrow \lim_{\delta \to 0^{+}} f = 2$. et ona: $f(0) = 2$.

$$-\lim_{o} f = f(o) \Rightarrow f$$
 Continue en o.

$$\frac{2^{\circ}}{x} = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{2 - \sqrt{x^{2} - x} - 2}{x} = \lim_{x \to 0^{-}} - \frac{\sqrt{x^{2} - x}}{x} = \lim_{x \to 0^{-}} - \frac{x^{2} - x}{\sqrt{x^{2} - x}} = \lim_{x \to 0^{-}} - \frac{x - 1}{\sqrt{x^{2} - x}} = +\infty.$$

=> f n'est pas dérivable à gauche en o et la Combe de f

admet au point d'absaisse à une demi-tangente verticale.

*
$$\lim_{x\to 0+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0+} \frac{1+\sqrt{1+x^2}-2}{x} = \lim_{x\to 0+} \frac{1-\sqrt{1+x^2}}{x\sqrt{1+x^2}}$$

$$= \lim_{x\to 0+} \frac{-x^2}{x\sqrt{1+x^2}\left(1+\sqrt{1+x^2}\right)} = \lim_{x\to 0+} \frac{-x}{\sqrt{1+x^2}\left(1+\sqrt{1+x^2}\right)} = 0$$

de f admet, à droite, au point d'absaisse o une deni-tangente

-horizontale.

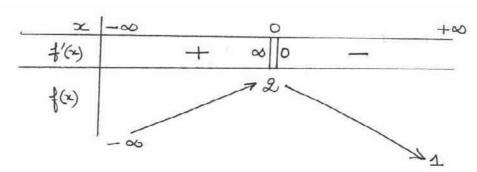
3°) a) Pour
$$x \in J_{0,1+\infty}[$$
 one: $f(x) = 1 + \frac{1}{\sqrt{1+x^2}}$.

$$f'(x) = \frac{-\frac{2x}{2\sqrt{1+x^2}}}{(\sqrt{1+x^2})^2} = \frac{-x}{(1+x^2)\sqrt{1+x^2}}.$$

b) Power
$$x \in]-\infty, 0[$$
; $f(x) = 2 - \sqrt{x^2 - x} \implies f'(x) = -\frac{2x - 1}{2\sqrt{x^2 - x}}$

$$f'(x) = \frac{1 - 2x}{2\sqrt{x^2 - x}} \text{ if } x < 0$$

$$f'(x) = \frac{-x}{(1+x^2)\sqrt{1+x^2}} \text{ if } x > 0$$



40) Soit la fonction of définie Aur]0,+∞[par: q(x)=f(x)-x.

g dérivable sur]0,+∞[et g(x)=f(x)-1 <0 (car f(x)<0 pror x)0)

⇒ g est strictement déavissante sur Jo,+∞[. (1)

lu plus ona: g(1,5).g(1,6)=

donc il eaiste « ∈]1,5; 1,6 [+q g(x)=0 ⇔ f(x)= d

d'apres (1) « est unique dous Jo,+∞[.

Correction de l'exercice n°2

1°) a)
$$w_{n+1} = v_{n+1} - u_{n+1} = \frac{u_n + 2v_n}{3} - \frac{3u_n + 4v_n}{7} = \frac{7u_n + 14v_n - 9u_n - 12v_n}{21}$$

$$= \frac{-2u_n + 2v_n}{21} = \frac{2}{21}(v_n - u_n) = \frac{2}{21}w_n.$$

 \Rightarrow (w_n) est une suite géométrique de raison $\frac{2}{21}$ et de 1er tenne $w_0 = 19$ b) Pour tout entier naturel n, $w_n = 19$. $\left(\frac{2}{21}\right)^n$.

2°) Pour tout nEIN;
$$v_n - u_n = w_n = 19\left(\frac{2}{21}\right)^n > 0 \implies u_n \leq v_n$$

3°) a)
$$u_{n+1} - u_n = \frac{4}{7}(v_n - u_n) = \frac{4}{7}\omega_n > 0 \implies (u_n)$$
 (voissante. $v_{n+1} - v_n = -\frac{1}{3}(v_n - u_n) = -\frac{1}{3}\omega_n < 0 \implies (v_n)$ décroissante.

(Un) et (Un) Sont adjacentes => (Un) et (Un) Sont Convergents et lui Un= lui Un= L 40) a) tny = 7 uny + 12 vn+ = 3 un+ 4 vn + 4 (un+ 2 vn) = 7 un + 12 un = tn => (tn) est une suite Constante.

b) (tn) suite Constante
$$\Rightarrow$$
 lim to = to = FU0+1226=247.

d'ante part: { Porn tout nEIN; tn = FUn+1226

lim Un = lim 2n = L

n++00

 $7 + 12 = 247 \implies = \frac{247}{19} = 13$

Correction de l'exercice n°3

19)
$$\Delta = (-2i)^{2} + 4(1+m^{2}) = -4 + 4 + 4m^{2} = 4m^{2} = (2m)^{2}$$
.
Les solutions: $3' = \frac{2i^{2} + 2m}{2} = i^{2} + m$ et $3'' = \frac{2i^{2} - 2m}{2} = i^{2} - m$.

2°) a)
$$f(i) = i^3 - 3i \cdot i^2 - (3 + m^2)i + i(1 + m^2)$$

= $-i^2 + 2i - 2i - im^2 + i^2 + im^2 = 0$.

$$f(i)=0 \implies f(3)$$
 est factorisable for $3-i$.

$$\forall 3 \in C$$
; $f(3) = (3-i)(a3^2+b3+c)$ où a, b et c sont des nombres complexes.

$$\forall z \in C$$
; $f(3) = az^3 + bz^2 + cz - az^2 - ibz - ic$
= $az^3 + (b - ia)z^2 + (c - ib)z - ic$

b)
$$f(3) = 0 \iff 3 = i \text{ ou } 3^2 - 2i3 - (1+m^2) = 0$$

 $\iff 3 = 1^0 \text{ ou } 3 = 3^1 \text{ ou } 3 = 3^m. \text{ (Voir 10)}.$
 $SC = \{i, i-m, i+m\}$.

3°) a)
$$\frac{AH(M') + AH(M'')}{2} = \frac{i^2 + m + i^2 - m}{2} = i^2 = AH(A)$$

 $A = M' * M''$

b)
$$OM' = | l^2 + m | = \sqrt{m^2 + 1}$$
 $| = OH' = OH'' \Rightarrow OM'M'' bocele.$
 $OM'' = | l^2 - m | = \sqrt{m^2 + 1}$

c) Le triongle OM'M" et équilatéral
$$48^{\circ}$$
 OM'=OM'=M'M".

equivant à M'M" = $\sqrt{1+m^2} \iff 2|m| = \sqrt{1+m^2}$

$$\iff 1+m^2 = 4m^2 \iff 3m^2 = 1 \iff m = -\frac{1}{\sqrt{3}} \text{ trum} = \frac{1}{\sqrt{3}}.$$