SECTION: SCIENCES EXPÉRIMENTALES

NIVEAU: 4 èME SC-EXP

Devoir de controle Nº2

LYCÉE:BECHRI

A.S:2009/2010

DATE:LE 09/02/2010

DURÉE: 2H

Exercice N°01

(**4** points)

 $KKK'G \neq A5H \leftarrow G'H?$

Pour chacune des questions suivantes une seule des trois réponses proposées est exactes. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. <u>Aucune justification n'est demandée</u>. Une réponse correcte paut 1 point ,une réponse fausse ou l'abscence de réponse paut 0 point.

On considère une fonction f définie et dérivable sur IR.Le tableau de variations de f est le suivant:

х	-∞	-2	2	+∞
f(x)	+∞ \	-1	3	\ _0

La courbe représentative de la fonction f admet pour asymptote(s) la (ou les) droite(s) d'équation(s)

- a) x = -2 et x = 2
- b) y = 0
- c) x = 0
- **2** La fonction $f: x \mapsto \sqrt[3]{x}$ est dérivable sur
 - $a) [0,+\infty[$
- $b) \]0,+\infty[$
- $c) \mathbb{R}^*$
- **3** L'espace est rapporté à un repère orthonormé direct. On donne trois points non alignés A,B et C L'ensemble des points M de l'espace tels que $(\overrightarrow{AB} \wedge \overrightarrow{AC}) \cdot \overrightarrow{AM} = 0$ est
- $a) \ \ Le \ plan \ (ABC)$
- b) La droite passant par A et de vecteur directeur $\vec{u} = \overrightarrow{AB} \wedge \overrightarrow{AC}$
- c) La droite (AB)
- **4** L'espace est rapporté à un repère orthonormé direct. On donne trois points non alignés A,B et C L'ensemble des points M de l'espace tels que $(\overrightarrow{AB} \wedge \overrightarrow{AC}) \wedge \overrightarrow{AM} = \overrightarrow{0}$ est
 - a) Le plan (ABC)
- b) La droite passant par A et perpendiculaire au plan (ABC)
- c) La droite (AB)

Exercice N°02

(6 points)

L'espace est muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. On considère les points A(3,0,-1), B(1,2,-3) et C(3,2,6).

- **1** a) Donner une représentation paramétrique de la droite Δ passant par le point C et de vecteur directeur $\vec{u} = \vec{i} + 3\vec{k}$.
 - b) Ecrire une équation cartésienne du plan P médiateur du segment [AB]
 - c) Montrer que la droite Δ coupe le plan P en un point H dont on précisera les coordonnées
- 2 Soit S l'ensemble des points M(x,y,z) tel que : $x^2 + y^2 + z^2 2x 4y 4 = 0$
- a) Montrer que S est une sphère dont on précisera le centre I et le rayon R
- b) Vérifier que les points A et B appartiennent à S et que I est un point de Δ
- c) Montrer que C est à l'extérieur de S.

3 Soit S' l'ensemble des points M de l'espace tel que : $\overrightarrow{MC}^2 + \overrightarrow{MC} \cdot \overrightarrow{CH} = 0$

a) Vérifier que $\overrightarrow{MC} \cdot \overrightarrow{MH} = 0$ puis caractériser S'.

b) Donner une équation cartésienne de S'.

Exercice N°03

(6 points)

Soit f la fonction définie sur IR par $f(x) = \sqrt{x^2 + 2x + 5}$, on désigne par (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

1 Montrer que la droite d'équation x=-1 est un axe de symétrie de (C).

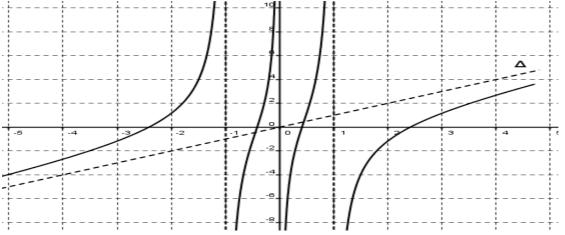
2 Dresser le tableau de variation de f.

3 a) Montrer que la droite Δ : y = x + 1 est une asymptote à (C) au voisinage de $+\infty$. b) Tracer (C)

4 On désigne par g la restriction de f à l'intervalle $[-1,+\infty[$

a) Montrer que g réalise une bijection de $\left[-1,+\infty\right[$ sur $\left[2,+\infty\right[$.

b) Montrer que pour tout $x \in [2, +\infty[$, on a $g^{-1}(x) = -1 + \sqrt{x^2 - 4}$


c) Tracer la courbe (C') de g^{-1} .

Exercice N°04

(4 points)

La courbe ci-dessous est la représentation graphique d'une fonction f définie sur \mathbb{R}^* $-\{-1,1\}$

La droite Δ et les droites d'équations x=-1, x=1 et x=0 sont des asymptotes à la courbe Cf

ODéterminer graphiquement :

 $\lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x), \lim_{x \to -1^{-}} f(x), \lim_{x \to -1^{+}} f(x), \lim_{x \to 0^{-}} f(x), \lim_{x \to 0^{+}} f(x), \lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{-}} f(x)$

$$\lim_{x \to +\infty} \frac{f(x)}{x} \quad et \quad \lim_{x \to -\infty} (f(x) - x)$$

2 *Dresser le tableau de variation de f.*

3 Déterminer le nombre de solutions de l'équation f(x) = 8

KKK'G; A5HkG'H?

Bon Travail

Prof:Lahmadi Adel