

Cours à distance au profit des élèves de la 7° D

Exercice

On considère dans \mathbb{C} l'équation (E) : $z^2 - (3-i)z + 4 = 0$.

- **1.** a. Résoudre dans \mathbb{C} l'équation (E). On note z_1 et z_2 les solutions où $Im(z_1) > 0$.
 - b. Mettre z_1 et z_2 sous forme trigonométrique .
- **2.** Soit dans \mathbb{C} l'équation(E'): $3z^3 + (-9+i)z^2 + (14+6i)z 8i = 0$. **a.** Vérifier que $z_0 = \frac{2}{3}i$ est une solution de (E'). On pourra s'aider de l'égalité :

$$3z^3 + (-9+i)z^2 + (14+6i)z - 8i = [(3z-9+i)z + 14+6i]z - 8i$$

b. Déterminer les nombres complexes a, b et c tels que pour tout z de \mathbb{C} , on ait :

$$3z^3 + (-9+i)z^2 + (14+6i)z - 8i = (z - z_0)(az^2 + bz + c).$$

- **c.** Résoudre alors l'équation(E').
- **3.** Dans le plan complexe $(0; \vec{u}, \vec{v})$, on considère les points $A(z_A = 1 + i)$, $B(z_B = 2 2i)$ et $C(z_C = \frac{2}{3}i)$. Soit Γ le cercle circonscrit au triangle OAC, on note Ω , d'affixe ω , le centre de Γ et R son rayon.
 - a. Justifier les égalités suivantes :

$$\omega.\overline{\omega} = R^2;$$
 $\left(\omega - \frac{2i}{3}\right)\left(\overline{\omega} + \frac{2i}{3}\right) = R^2;$ $(\omega - 1 - i)(\overline{\omega} - 1 + i) = R^2.$

- **b.** Montrer que $\omega + \overline{\omega} = \frac{4}{3}$ et $\omega \overline{\omega} = \frac{2i}{3}$. En déduire ω et la valeur du rayon R.
- **c.** Les points $E\left(\frac{1}{3} \frac{1}{3}i\right)$ et $F\left(\frac{1}{2} + \frac{4}{5}i\right)$ appartiennent-ils à Γ ? Justifier votre réponse.
- **4.** Soit D le point tel que le triangle OBD soit équilatéral direct, et soit z_D l'affixe de D.
 - **a.** En utilisant l'égalité $(\vec{u}, \overrightarrow{OD}) = (\vec{u}, \overrightarrow{OB}) + (\overrightarrow{OB}, \overrightarrow{OD})$, déterminer un argument du nombre z_D . En déduire une forme trigonométrique de z_D .
 - **b.** Justifier que $\frac{z_D}{z_R} = e^{i\frac{\pi}{3}}$. Déterminer z_D sous forme algébrique.
 - **c.** En déduire les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et de $\sin\left(\frac{5\pi}{12}\right)$.

Corrigé _

On considère dans \mathbb{C} l'équation (E) : $z^2 - (3 - i)z + 4 = 0$.

1. a. Résolution de (E):

On a
$$\Delta = b^2 - 4ac = (3-i)^2 - 16 = 9 - 1 - 6i - 16 = -8 - 6i = (3i)^2 + 1^2 - 2 \times 3i \times 1 = (3i-1)^2$$

Donc $\delta=3i-1$, et les solutions de (E) sont (tenant compte de la condition $Im(z_1)>0$.) :

$$z_1 = \frac{(3-i) + (3i-1)}{2} = 1+i;$$
 $z_2 = \frac{(3-i) - (3i-1)}{2} = 2-2i.$

b. Mettre z_1 et z_2 sous forme trigonométrique :

On a de toute évidence :

$$\begin{cases} |z_1| = |1+i| = \sqrt{2} \\ \arg(z_1) = \frac{\pi}{4} [2\pi] \end{cases} , \qquad \begin{cases} |z_2| = |2-2i| = 2\sqrt{2} \\ \arg(z_2) = -\frac{\pi}{4} [2\pi] \end{cases}$$

D'où:

$$z_1 = \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right); \quad z_2 = 2\sqrt{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right).$$

- **2.** On considère l'équation (E'): $3z^3 + (-9+i)z^2 + (14+6i)z 8i = 0$:
 - a. On sait que:

$$3z^3 + (-9+i)z^2 + (14+6i)z - 8i = [(3z-9+i)z + 14+6i]z - 8i$$

D'où en remplaçant z par $z_0 = \frac{2}{3}i$:

$$3z_0 - 9 + i = 3 \times \frac{2}{3}i - 9 + i = \frac{3i - 9}{3i - 9}$$

$$(3z_0 - 9 + i)z_0 + 14 + 6i = (3i - 9) \times \frac{2}{3}i + 14 + 6i = -2 - 6i + 14 + 6i = \frac{12}{3}i$$

$$[(3z_0 - 9 + i)z_0 + 14 + 6i]z_0 - 8i = 12 \times \frac{2}{3}i - 8i = 8i - 8i = 0$$

Donc $z_0 = 2i/3$ est bien solution de l'équation (E').

Remarque : il s'agit ici du tableau d'Hörner disposé de manière linéaire.

b. Factorisation de $3z^3 + (-9 + i)z^2 + (14 + 6i)z - 8i$:

D'après les calculs précédents, il ressort clairement que pour tout complexe z :

$$3z^{3} + (-9+i)z^{2} + (14+6i)z - 8i = \left(z - \frac{2}{3}i\right)(3z^{2} + (3i-9)z + \frac{12}{2})$$
$$= 3\left(z - \frac{2}{3}i\right)(z^{2} - (3-i)z + 4) = (3z - 2i)(z^{2} - (3-i)z + 4)$$

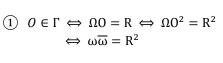
c. Résolution de l'équation (E'):

$$z \in S_{(E)} \iff (3z - 2i)(z^2 - (3 - i)z + 4) = 0 \iff 3z - 2i = 0 \text{ ou } z^2 - (3 - i)z + 4 = 0.$$

Tenant compte des résultats de la question 1. a., on déduit les solutions de (E'):

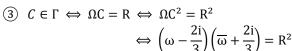
$$\frac{2}{3}i$$
; 1+i; 2-2i.

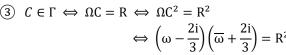
- **3.** Dans le plan complexe $(0; \vec{u}, \vec{v})$, on considère lespoints $A(z_A = 1 + i)$, $B(z_B = 2 2i)$ et $C(z_C=2i/3)$. Soit Γ le cercle circonscrit au triangle OAC, on note Ω , d'affixe ω , le centre de Γ et R son rayon.
 - a. Justifions les égalités proposées : Les points O, A et C appartiennent à Γ . On traduit ces appartenances en termes de modules :



②
$$A \in \Gamma \iff \Omega A = R \iff \Omega A^2 = R^2$$

 $\iff (\omega - 1 - i)(\overline{\omega} - 1 + i) = R^2$





b. Montrons que $\omega + \overline{\omega} = \frac{4}{3}$ et $\omega - \overline{\omega} = \frac{2i}{3}$:

Développons les relations 3 et 2 en tenant compte de l'égalité $\omega\overline{\omega}=R^2$:

$$(3) \left(\omega - \frac{2i}{3}\right) \left(\overline{\omega} + \frac{2i}{3}\right) = R^2 \iff \omega \overline{\omega} + \frac{2i}{3}(\omega - \overline{\omega}) + \frac{4}{9} = R^2 = \omega \overline{\omega} \iff \omega - \overline{\omega} = \frac{2i}{3},$$

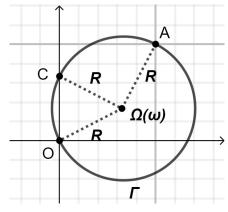
$$(2) (\omega - 1 - i)(\overline{\omega} - 1 + i) = R^2 \iff \omega \overline{\omega} - (\omega + \overline{\omega}) + i(\omega - \overline{\omega}) + 2 = R^2 = \omega \overline{\omega} \iff \omega + \overline{\omega} = \frac{4}{3}.$$

Déduction de ω et de la valeur de R :

On sait que:

$$\omega + \overline{\omega} = \frac{4}{3} = 2\Re(\omega),$$
 donc $\Re(\omega) = \frac{2}{3}$
 $\omega - \overline{\omega} = \frac{2i}{3} = 2i\Im(\omega),$ donc $\Im(\omega) = \frac{1}{3}$

D'où finalement :



$$\omega = \frac{2}{3} + \frac{1}{3}i;$$
 $R = |\omega| = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2} = \frac{\sqrt{5}}{3}.$

c. Les points $E\left(\frac{1}{3} - \frac{1}{3}i\right)$ et $F\left(\frac{1}{2} + \frac{4}{5}i\right)$ appartiennent-ils à Γ ?

On sait que : $M \in \Gamma \iff \Omega M^2 = R^2$.

$$\Omega E^2 = \left(\frac{1}{3} - \frac{2}{3}\right)^2 + \left(\frac{-1}{3} - \frac{1}{3}\right)^2 = \frac{5}{9} = \left(\frac{\sqrt{5}}{3}\right)^2 = R^2; \quad \Omega F^2 = \left(\frac{1}{2} - \frac{2}{3}\right)^2 + \left(\frac{4}{5} - \frac{1}{3}\right)^2 = \frac{1}{36} + \frac{49}{225} \neq R^2.$$

Donc $E \in \Gamma$ et $F \notin \Gamma$.

4. Soit *D* le point tel que le triangle *OBD* est équilatéral direct.

Par définition du point D, on a :

$$arg(z_D) = (\vec{u}, \overrightarrow{OD}); \qquad |z_D| = OD = OB$$

a.
$$(\vec{u}, \overrightarrow{OD}) = (\vec{u}, \overrightarrow{OB}) + (\overrightarrow{OB}, \overrightarrow{OD}) = \arg(z_B) + \frac{\pi}{3} = \arg(2 - 2i) + \frac{\pi}{3} = -\frac{\pi}{4} + \frac{\pi}{3} = \frac{\pi}{12} [2\pi]$$

D'où:

$$\arg(z_D) = \frac{\pi}{12} [2\pi]; \qquad |z_D| = OD = OB = 2\sqrt{2}.$$

Donc:

$$z_D = 2\sqrt{2} \left(\cos \left(\frac{\pi}{12} \right) + i \sin \left(\frac{\pi}{12} \right) \right)$$

b. Puisque le triangle *OBD* est équilatéral direct alors

$$\frac{z_D - z_O}{z_B - z_O} = \frac{z_D}{z_B} = e^{i\frac{\pi}{3}}$$

D'où une forme algébrique de z_D :

$$z_D = z_B \times e^{i\frac{\pi}{3}} = (2 - 2i) \times \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = (1 - i)(1 + i\sqrt{3}) = (\sqrt{3} + 1) + (\sqrt{3} - 1)i.$$

c. Valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et de $\sin\left(\frac{5\pi}{12}\right)$:

On a trouvé que :

$$z_D = 2\sqrt{2}\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right) = (\sqrt{3} + 1) + (\sqrt{3} - 1)i$$

D'où par identification des parties réelles et imaginaires :

$$2\sqrt{2}\cos\left(\frac{\pi}{12}\right) = \sqrt{3} + 1; \quad 2\sqrt{2}\sin\left(\frac{\pi}{12}\right) = \sqrt{3} - 1.$$

Et enfin:

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}+1}{2\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{4}; \quad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{4}.$$

Or on sait que:

$$\frac{5\pi}{12} = \frac{\pi}{2} - \frac{\pi}{12}$$

et que:

$$\begin{cases} \cos\left(\frac{\pi}{2} - x\right) = \sin(x) \\ \sin\left(\frac{\pi}{2} - x\right) = \cos(x) \end{cases}$$

d'où:

$$\cos\left(\frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}; \quad \sin\left(\frac{5\pi}{12}\right) = \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}.$$