Lycée Menabi El Ouloum – 7^e C/15

Exercice 1

Dans tout l'exercice, n désigne un entier naturel non nul. On considère la fonction f_n définie sur [0, +∞[par : $f_n(x) = x^n e^{-nx}$. On note C_n la courbe de f_n dans le plan rapporté à un repère orthonormé $(0; \vec{\iota}, \vec{\jmath})$.

- 1. a. Dresser le tableau de variations de la fonction f_n .
 - **b.** Déterminer les positions relatives des courbes C_n et C_{n+1} .
- 2. a. Tracer C₁ et C₂ en précisant les demi-tangentes à l'origine.
 - **b.** Calculer l'aire du domaine limité par la courbe C_1 et les droites d'équations respectives x=0 et x=n.
 - **c.** Calculer $\lim_{n\to+\infty} S_n$.

Partie B: Pour tout $x \ge 0$ et pour tout $n \ge 1$, on pose : $F_n(x) = \int_0^x f_n(t) dt$.

- 1. Montrer que pour tout $t \ge 0$, on $a : 0 \le f_1(t)e^{\frac{t}{2}} \le 1$.
- 2. a. Montrer alors que, pour tout nombre réel $t \ge 0$ et tout entier $n \ge 1$, on a $0 \le f_n(t) \le e^{-\frac{t}{2}}$.
 - **b.** En déduire que, pour tout nombre réel $x \ge 0$ et pour tout entier $n \ge 1$, on a $0 \le F_n(x) \le 2$.

Partie C: Pour tout réel $u \ge 0$ et pour tout entier $n \ge 1$, on pose :

$$G_n(u) = \int_0^u t^n e^{-t} dt.$$

- 1. a. Montrer que pour tout entiers $n \ge 2$: $G_n(u) = -u^n e^{-u} + nG_{n-1}(u)$.
 - **b.** En déduire que pour tout entier $n \ge 2$:

$$G_n(u) = -n! e^{-u} \sum_{p=2}^n \frac{u^p}{p!} + n! G_1(u).$$

- 2. Montrer alors que pour tout entier $n \geq 1$: $\lim_{u \to +\infty} G_n(u) = n!$
- 3. a. Montrer que, pour tout réel $x \ge 0$ et pour tout entier $n \ge 1$, on a : $G'_n(nx) = n^n f_n(x)$.
 - **b.** Montrer alors que pour tout réel $x \ge 0$ et pour tout entier $n \ge 1$, on a :

$$F_n(x) = \frac{1}{n^{n+1}}G_n(nx).$$

c. En déduire la valeur de : $\lim_{x\to +\infty} F_n(x)$.

Exercice 2

Soient α et β deux nombres complexes quelconques. On pose $j=\frac{2i\pi}{3}$ et pour tout complexe z:

$$f(z) = z^3 + \alpha z^2 + \beta z$$

- 1. Montrer que $f(1) + f(j) + f(j^2) = 3$. (On notera que $1 + j + j^2 = 0$ et $j^3 = 1$).
- 2. a. En déduire que $|f(1)| + |f(j)| + |f(j^2)| \ge 3$.
 - b. En déduire que l'un au moins des réels |f(1)|, |f(j)| et $|f(j^2)|$ est supérieur ou égal à 1.
- 3. Le plan est muni d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$. ABC est un triangle équilatéral direct de centre de gravité O et tel que l'affixe de A soit un réel r strictement positif fixé. I et J sont deux points quelconques du plan d'affixes respectives a et b.Dans cette question on prend :

$$\alpha = -\frac{a+b}{r}$$
 et $\beta = \frac{ab}{r^2}$

- $\alpha=-\frac{a+b}{r}\ \ \text{et}\ \ \beta=\frac{ab}{r^2}$ a. Montrer que les affixes respectives de B et C sont r,j et $r,j^2.$
- b. Montrer que $BO \times BI \times BI = r^3 |f(j)|$. Calculer de la même manière $CO \times CI \times CI$ et $AO \times AI \times AI$.
- c. Montrer que le triangle ABC a au moins un sommet S vérifiant : $SO \times SI \times SJ \ge r^3$.