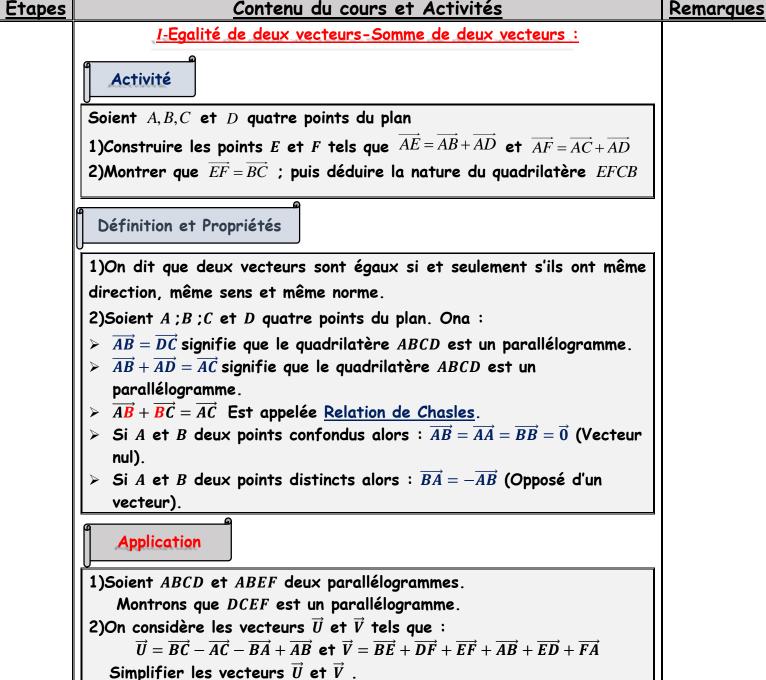
Chapitre 02: Calcul Vectoriel dans le plan Les capacités Attendues Contenu du cours * Construire un vecteur de la * Egalité de deux vecteurs ; Prof: Abdelwahed somme de deux vecteurs : forme au + bv. Niveau Scolaire: TCSF relation de Chasles. * Exprimer les notions et les **Durée : 5**Heures Multiplication d'un vecteur propriétés de la géométrie المملكة المغربية +°XNV \$+ I NE HO \$0 par un nombre réel. affine en utilisant l'outil Colinéarité de deux vectoriel et vecteurs, alignement de réciproquement. وزارة التربية الوصنية والتعليم الأولى والرياضة trois points. * Résoudre des problèmes géométriques en utilisant * Définition vectorielle du milieu +°E°П°O+ I 30XE≤ °I°E30 d'un segment. l'outil vectoriel. A SOONEY OF THE STATE OF THE ST Contenu du cours et Activités Remarques I-Egalité de deux vecteurs - Somme de deux vecteurs : Activité Soient A, B, C et D quatre points du plan



II-Multiplication d'un vecteur par un réel

Activité

Soient ABC un triangle. Construire les points M; N; P et K tels que :

$$\overrightarrow{AM} = 2\overrightarrow{AB}$$
 ; $\overrightarrow{BN} = -2\overrightarrow{BC}$; $\overrightarrow{AL} = \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{CK} = \frac{3}{2}\overrightarrow{CB}$.

Définition

Soit \overrightarrow{u} un vecteur non nul et k un réel non nul. Le produit du vecteur \vec{u} par le réel k est le vecteur noté $k\vec{u}$ défini par :

- ightharpoonup Si k>0 Alors \vec{u} et $k\vec{u}$ ont la même direction ; la même sens $\mathbf{et} \| k \overrightarrow{u} \| = k \| \overrightarrow{u} \|.$
- ightharpoonup Si k < 0 Alors \vec{u} et $k\vec{u}$ ont la même direction ;de sens contraire $\mathbf{e}\mathbf{t}\|\mathbf{k}\mathbf{\vec{u}}\| = -\mathbf{k}\|\mathbf{\vec{u}}\|.$

Remarques

1)Si k=0 Alors $k\vec{u}=\vec{0}$ càd $0.\vec{u}=\vec{0}$

2)Si $\vec{u} = \vec{0}$ Alors $k\vec{u} = \vec{0}$ càd $k.\vec{0} = \vec{0}$

3)Ona $1.\vec{u} = \vec{u}$ et $(-1).\vec{u} = -\vec{u}$

4)Ona $k.\vec{u} = \vec{0}$ équivaut à k = 0 ou $\vec{u} = \vec{0}$

Application

Soient ABC un triangle. Construire les points E; F; G et H tels que :

$$\overrightarrow{AE} = \frac{4}{3}\overrightarrow{AB}$$
; $\overrightarrow{BF} = -\frac{1}{2}\overrightarrow{AC}$; $\overrightarrow{BG} = \overrightarrow{BA} - 2\overrightarrow{BC}$ et $\overrightarrow{AH} = \frac{2}{3}\overrightarrow{BC}$

Proposition

Soient \vec{u} et \vec{v} deux vecteurs et α ; β deux réels ona :

1)
$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \beta \vec{v}$$

1)
$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \beta \vec{v}$$
 2) $(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}$ 3) $\alpha(\beta \vec{u}) = (\alpha \beta)\vec{u}$

Exemples

1) Ona
$$7\overrightarrow{AB} - \frac{3}{2}\overrightarrow{AB} = \left(7 - \frac{3}{2}\right)\overrightarrow{AB} = \frac{11}{3}\overrightarrow{AB}$$

2) Ona
$$5\overrightarrow{AB} + 5\overrightarrow{BC} = 5(\overrightarrow{AB} + \overrightarrow{BC}) = 5\overrightarrow{AC}$$

3) Ona
$$2\left(\frac{3}{2}\overrightarrow{AC}\right) = \left(2 \times \frac{3}{2}\right)\overrightarrow{AC} = 3\overrightarrow{AC}$$

Application

1)Simplifier les écritures vectorielle suivantes :

$$\vec{a} = 2(\vec{u} + 5\vec{v}) + 3(\vec{u} - \vec{v})$$
 et $\vec{b} = 13\vec{u} + 3(4\vec{v} - \vec{u}) + 2\vec{v}$

2)En déduire une relation vectorielle entre les vecteurs \vec{a} et \vec{b}

III-Colinéarité de deux vecteurs-Alignement de trois points

Activité

Soient ABC un triangle et soient D et M deux points du plan tels que :

$$\overrightarrow{AD} = 2\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}$.

- 1)Construire une figure convenable.
- 2)Déduire la relation vectorielle entre les deux vecteurs \overrightarrow{AD} et \overrightarrow{AM} .
- 3)Que peut-on déduire pour les points A;D et M?

Définition

On dit que deux vecteurs \vec{u} et \vec{v} sont <u>colinéaires</u> si seulement s'il existe un réel k tel que : $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$

Propriétés

Soient A;B;C et D quatre points du plan.

- 1)On dit que les points A; B et C sont <u>alignés</u> si seulement s'il existe un réel k tel que : $\overrightarrow{AC} = \overrightarrow{kAB}$.
- 2)On dit que les droites (AB) et (CD) sont <u>parallèles</u> si seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Application 1

Soit ABCD un parallélogramme.E et F deux points du plan tels que :

$$\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB}$$
 et $\overrightarrow{DF} = 2\overrightarrow{AD}$.

- 1)Construire une figure convenable.
- 2) Montrer que : $\overrightarrow{CF} = -\overrightarrow{AB} + 2\overrightarrow{AD}$ et $\overrightarrow{CE} = \frac{1}{2}\overrightarrow{AB} \overrightarrow{AD}$.
- 3)En déduire que les points C; E et F sont alignés.

Application 2

Soit ABC un triangle.E et F deux points du plan tels que :

$$\overrightarrow{AE} = \frac{1}{3}\overrightarrow{CB}$$
 et $\overrightarrow{AF} = 4\overrightarrow{AC}$.

- 1)Construire une figure convenable.
- 2) Montrer que : $\overrightarrow{BF} = -\overrightarrow{AB} + 4\overrightarrow{AC}$ et $\overrightarrow{CE} = \frac{-1}{3}\overrightarrow{AB} + \frac{4}{3}\overrightarrow{AC}$.
- 3)En déduire que droites (BF) et (AC) sont parallèles.

3

IV-Milieu d'un segment

Proposition 1

Soient A; B et I trois points du plan.

I est <u>le milieu</u> du segment [AB] si seulement si l'une des relations suivantes soit réalisée :

$$\mathbf{1)} \ \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$

$$2) \vec{AI} = \vec{IB} = \frac{1}{2} \vec{AB}$$

Application

Soit ABC un triangle. E et F deux points du plan tels que :

$$\overrightarrow{AE} = \overrightarrow{CB}$$
 et $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$.

1)Construire une figure convenable.

2)Montrer que le point B est le milieu du segment [EF]

Remarque : Théorème des milieux

Soient ABC un triangle.

Si I est le milieu du [AB] et I est le milieu du [AC] alors : $\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{BC}$

Proposition 2 : Propriété caractéristique

Si I est le milieu du segment [AB] alors pour tout point M du plan,

ona :
$$\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$$

Preuve:

Soit un point M du plan.

Ona :
$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{MI} + \overrightarrow{IB}$$

= $2\overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{IB}$

Puisque I est le milieu du segment [AB] alors $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$

Donc : $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$ pour tout point M du plan.

Exercice global

Soit ABCD un parallélogramme de centre $\mathbf{0}$ et soit \mathbf{G} un point du plan

tel que :
$$\overrightarrow{AG} = \frac{1}{4}\overrightarrow{AC}$$
.

1) Construire une figure convenable.

2) Montrer que : $\overrightarrow{GB} + \overrightarrow{GD} = 2\overrightarrow{GO}$ et $\overrightarrow{GB} + \overrightarrow{GD} = 2\overrightarrow{AG}$.

3) En déduire que : G est le milieu du segment [OA].

4) soient E et F deux points du plant tels que: $\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB}$ et $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AB}$.

a-Construire E et F.

b-Montrer que E est le milieu du segment [AF].

c-Montrer que :

$$\overrightarrow{DG} = \frac{1}{4}\overrightarrow{AB} - \frac{3}{4}\overrightarrow{BC} \ et \ \overrightarrow{DE} = \frac{1}{3}\overrightarrow{AB} - \overrightarrow{BC}$$

d-En déduire que les points D; G et E sont alignés.