Page

1/4

Examen National Blanc N 4

Prof: Haddad Abdelwahed

Matière

Mathématiques

La durée : 3 Heures

Filière et Option

Sciences Expérimentales Avec Leurs Options

Le coefficient : 7

EXERCICE 01: (3pts)

On considère la suite (u_n) définie par :

$$u_0 = 1$$
 et $(\forall n \in \mathbb{N})$ $u_{n+1} = 4$

- 0. 5pts 0.75pts
- 1) Montrer que par récurrence : $(\forall n \in \mathbb{N})$ $1 \leq u_n \leq 2$
- 2) Montrer que la suite (u_n) est croissante et qu'elle est convergente .
- 3) Soit (v_n) la suite numérique définie par

$$(\forall n \in \mathbb{N}): v_n = \frac{1}{u_n - 2}$$

- 0. 5pts
- a) Montrer que (v_n) est une suite arithmétique de raison $r=rac{-1}{2}$.
- 0. 5pts
- b) En déduire que :

$$(\forall n \in \mathbb{N}) \ u_n = \frac{1}{\frac{-n}{2}-1} + 2$$

- **0.25pts**
- c) Calculer $\lim u_n$.
- 0. 5pt
- 4) Soit (w_n) la suite définie par : $(\forall n \in \mathbb{N})$ $w_n = ln(u_n)$.Déterminer $\lim_{n \to +\infty} w_n$.

EXERCICE 02: (5pts)

- 0.75pts
- 1) Résoudre dans \mathbb{C} l'équation : $z^2 2z + 2 = 0$.
- 2) Dans le plan complexe rapporté à un repère orthonormé direct $(0; \vec{u}; \vec{v})$,On considère les points

A , B , C et D d'affixes respectives :
$$a=1+i$$
 , $b=\sqrt{3}+i$, $c=\sqrt{3}-1+(\sqrt{3}+1)i$

et
$$d = \sqrt{3} + 1 + (\sqrt{3} - 1)i$$
.

- 0. 5pts a-Vérifier que : c = ab et $d = \frac{4a}{b}$
- 1pts b-Ecrire sous forme trigonométrique les nombres complexes c et d.

2/4

1pts

c-En déduire que : $\cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6}-\sqrt{2}}{4}$ et que : $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6}+\sqrt{2}}{4}$.

3) Soit *R* la rotation de centre *O* et d'angle $\frac{\pi}{3}$.

0.75pts

a- Montrer que : R(D) = C

0.5pts

b-En déduire que le triangle \emph{ODC} est équilatéral .

0.5pts

4) Déterminer l'ensemble des points M(Z) du plan tel que : $|Z-1-i|=\sqrt{2}$.

EXERCICE 03: (2pts)

0.5pts 0.75pts

0.75pts

- 1) Résoudre dans \mathbb{R} l'équation suivante : $x^2 + x 6 = 0$.
- 2) Résoudre dans l'intervalle]0; $+\infty[$ l'équation suivante : $ln^2(x) + ln(x) 6 \ge 0$
- 3) Montrer que : $ln\left(\sqrt{2+\sqrt{2}}\right) + ln\left(\sqrt{2-\sqrt{2}}\right) = \frac{1}{2}ln(2)$

Problème: (10pts)

Partie1:

Soit f la fonction numérique définie sur $\mathbb R$ par : $f(x) = (x-1)^2 e^x$

Et soit (C_f) sa courbe représentative dans un repère orthonormé $(0; \vec{\iota}; \vec{\jmath})$.(unité 1cm)

0.25pts

- 1) a- Monter que : $\lim_{x \to +\infty} f(x) = +\infty$
- 0. 5pts b- Montrer que : $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ et en déduire que la courbe (C_f) admet ,au voisinage de $+\infty$, une branche parabolique dont on précisera sa direction.

0.25pts

2) a- Monter que : $\forall x \in \mathbb{R}$ $f(x) = x^2 e^x - 2x e^x + e^x$ b- Montrer que $\lim_{x \to -\infty} f(x) = 0$ et interpréter géométriquement ce résultat.

0. 5pts 0.75pts

3) a-Montrer que : $f'(x)=(x^2-1)e^x$, pour tout $x\in\mathbb{R}$.

0. 5pts

b-Monter que la fonction f est croissante sur chacun des deux intervalles $]-\infty$; -1] et $[1;+\infty[$ et décroissante sur l'intervalle [-1;1].

0.25pts

c- Dresser le tableau de variation de la fonction f sur $\mathbb R$.

0.75pts

4) Etudier l'intersection de la courbe (C_f) avec les axes du repère.

0. 5pts

5) a- Montrer que : $f''(x) = (x^2 + 2x - 1)e^x$, pour tout $x \in \mathbb{R}$.

0. 5pts

b-En déduire que la courbe (C_f) admet deux points d'inflexion d'abscisses respectives $-1-\sqrt{2}$ et $-1+\sqrt{2}$.

1pts

6) Construire (C_f) dans le repère $(O; \vec{\imath}; \vec{\jmath})$.

 $(\textit{On donnera}: -1 - \sqrt{2} \approx 2.4; -1 + \sqrt{2} \approx 0.4; f(-1 - \sqrt{2}) \approx 1 \ \textit{et } f(-1 + \sqrt{2}) \approx 0.5)$

0.75pts

7) Utiliser la courbe (C_f) pour donner le nombre de solution de l'équation : $x^2 = 2x - 1 + e^{-x}$

3/4
0.75pts
0.75pts
0. 5pts
0. 5pts
0. 5pts
0.5.1.
0. 5pts

Partie2 :

- 1) Soit h la restriction de la fonction f sur l'intervalle $I=[1;+\infty[$.
 - a- Montrer que la fonction h admet une fonction réciproque h^{-1} définie sur $J=[0\ ;\ +\infty[$
 - b- Vérifier que $h(2)=e^2$ et montrer que : $(h^{-1})'(e^2)=rac{1}{3e^2}$.
 - d- Tracer en vert $\left(\mathcal{C}_{h^{-1}}\right)$,la courbe représentative de la fonction h^{-1} ,dans le repère $(\mathbf{0};\vec{\imath};\vec{\jmath})$.
- 2) a- Monter que la fonction $H: x \mapsto (x-1)e^x$ est une primitive de $h: x \mapsto xe^x$ sur $\mathbb R$ et calculer $\int_0^1 xe^x dx$.
 - b-Par une intégration par parties monter que : $\int_0^1 x^2 e^x dx = e-2$
 - b- En déduire que : $\int_0^1 f(x) dx = 2e 5$.