(0,75 pt)

Exercice 1: (6pts)

- 1. Déterminons les nombres qui sont divisbles par
 - **a.** par 3, on a: $D_3 = \{735; 1224; 3600\}$
 - **b.** par 5, on a: $D_5 = \{735; 3600\}$ (0.50 pt)
 - **c.** par 10, on a on a: $D_{10} = \{3600\}$ (0.25 pt)
 - **d.** par 3 et 5, on a $\{735; 3600\}$ (0,50 pt)
- 2. Décomposons chacun des nombres en produits de facteurs premiers

$$286 = 2 \times 11 \times 13 \tag{0.75 pt}$$

$$735 = 3 \times 5 \times 7^2 \tag{0.75 pt}$$

$$1224 = 2^3 \times 3^2 \times 17 \tag{0.75 pt}$$

$$3600 = 2^4 \times 3^2 \times 5^2 \tag{0.75 pt}$$

- 3. Déterminons pgcd(1224; 3600) $pgcd(1224; 3600) = 2^3 \times 3^2 = 72$ (0,50pt)
- 4. Déterminons pgcd(1224; 3600) $ppcm(286; 735) = 2 \times 11 \times 13 \times 3 \times 5 \times 7^2 = 210 \ 210$ (0,50pt)

Exercice 2: (6pts)

1. C alculons les montants :

$$M_{Fev} = 50\ 000 + 1\ 000 \times 2 = 52\ 000$$
 (1 pt)

$$M_{Mars} = 50\ 000 + 1\ 000 \times 3 = 53\ 000 \tag{1 pt}$$

$$M_{Juin} = 50\ 000 + 1\ 000 \times 6 = 56\ 000 \tag{1 pt}$$

2. a. Montrons que : $U_n = U_0 + 1000 \times n$

 $U_{n+1} = U_n + 100$ donc (U_n) est une suite arithmétique de premier terme $U_0 = 50\,000$ et de raison r = 1000 donc $U_n = U_0 + n$ $r \Longrightarrow U_n = 50\,000 + 1\,000 \times n$ (0,75pt)

- b. C alculons l'interêt au bout d'un an $I_{12} = 1\ 000 \times 12 = 12\ 000$ (0,75pt)
- c. Calculons le montant au bout d'un an

$$U_{12} = U_0 + I_{12} = 50\ 000 + 12\ 000 \Longrightarrow U_{12} = 62\ 000$$
 (0,75pt)

3. Déterminons le nombre de mois où le capital sera doublé

$$U_n = 2U_0 \Longrightarrow 50\ 000 + 1\ 000n = 2U_0$$

$$1\ 000n = 2 \times 50\ 000 - 50\ 000 \implies n = \frac{50\ 000}{1\ 000} = 50\ mois \tag{0.75pt}$$

Problème: (8pts)

$$f(x) = x^3 - 3x + 1$$

1. Déterminons D_f (1pt)

$$D_f = \mathbb{R} =]-\infty; +\infty[$$

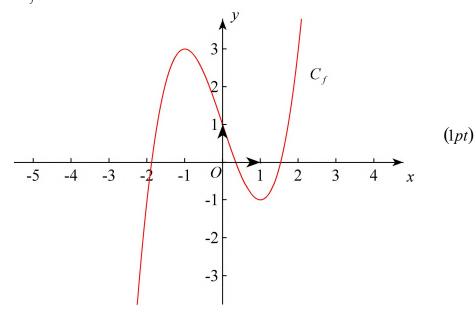
2. Calculons les limites aux bornes de D_f

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty \tag{1pt}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty \tag{1pt}$$

3. Calculons f'(x)

$$f'(x) = 3x^2 - 3$$
 (1pt)


4. Dressons le tableau de varation de f(x)

$$f'(x) = 0 \Rightarrow 3x^2 - 3 = 0 \Rightarrow x^2 = 1 \Rightarrow x = 1 \text{ ou } x = -1$$
 (1pt)

Les extremums :

f(-1) =	= 3 et f(1) = -1	(0,5pt)
x	-∞ -1 1 +∞	
f'(x)	+ 0 - 0 +	(1,5pt)
f(x)	- w + w	

5. Traçons la courbe C_f

