Bac. Session de Juin 1997

T.SCExp

<u>Exercice 1</u>.....(5 *points*)

On considère la fonction f définie de \mathbb{R} vers \mathbb{R} par : $f(x) = (x^2 - 1)e^{-3x}$.

Trouve trois nombres réels a; b et c tels que la fonction F de $\mathbb R$ vers $\mathbb R$ définie par :

 $F(x) = (ax^2 + bx + c)e^{-3x}$ soit une primitive de f dans \mathbb{R} .

<u>Exercice</u> 2.....(5 *points*)

Soit l'application $f: [0; +\infty[\rightarrow \mathbb{R}$

$$\chi \to \frac{x^2}{x^2 + 1}$$

- 1) Trouve l'intervalle I tel que $I = f([0; +\infty[)$
- 2) Montre que f est une bijection de $[0; +\infty[$ sur J.
- 3) Représente graphiquement la courbe (C_f) de la fonction f et celle de sa bijection réciproque $(C_{f^{-1}})$ dans le même repère orthonormé.

(On ne demande pas d'expliciter l'application reciproque f^{-1} .)

<u>Problème</u>.....(10 points)

Partie A:

Soit la fonction g définie sur] 0; $+\infty$ [par $g(x) = -x^2 + 1 - \ln x$

- 1) Dresse le tableau de variation de g.
- 2) Calcule g(1) puis en déduis le signe de g(x) suivant les valeurs de x.

Partie B:

Soit la fonction f définie sur]0; $+\infty[$ par $f(x) = -\frac{1}{2}x + 1 + \frac{lnx}{2x}$ et (C) sa courbe dans le repère orthonormé $(0; \vec{i}; \vec{j})$ (unité graphique 2 cm)

- 1) Dresse le tableau de variation de f.
- 2) Démontre que l'équation f(x) = 0 admet deux solutions α et β avec ($\alpha < \beta$)
- 3) a) Montre que la droite (Δ) d'équation $y = -\frac{1}{2}x + 1$ est asymptote à la courbe (C) de f.
 - b) Etudie le signe de $f(x) \left(-\frac{1}{2}x + 1\right)$ puis en déduis la position de (C) et (Δ).
- 4) Trace (C) et (Δ) dans le même repère.

Correction Bac 1997

T.SCExp

On considère la fonction f définie de \mathbb{R} vers \mathbb{R} par : $f(x) = (x^2 - 1)e^{-3x}$.

Trouvons trois nombres réels $g \cdot h$ et $g \cdot h$ et $g \cdot h$.

 $F(x) = (ax^2 + bx + c)e^{-3x}$ soit une primitive de f dans \mathbb{R} .

F est une primitive de f si et seulement si F'(x) = f(x).

Avec
$$F'(x) = [-3ax^2 + (2a - 3b)x + b - 3c]e^{-3x}$$
.

Avec F'(x) =
$$[-3ax^2 + (2a - 3b)x + b - 3c]e^{-3x}$$
.
F'(x) = $f(x) \Leftrightarrow [-3ax^2 + (2a - 3b)x + b - 3c]e^{-3x} = (x^2 - 1)e^{-3x}$

$$\Leftrightarrow -3ax^{2} + (2a - 3b)x + b - 3c = x^{2} - 1 \Leftrightarrow \begin{cases} -3a = 1 \\ 2a - 3b = 0 \Leftrightarrow \\ b - 3c = -1 \end{cases} \begin{cases} a = -\frac{1}{3} \\ b = -\frac{2}{9} \\ c = \frac{7}{27} \end{cases}$$

D'où
$$F(x) = \left(-\frac{1}{3}x^2 - \frac{2}{9}x + \frac{7}{27}\right)e^{-3x}$$

<u>Exercice</u> 2......(5 *points*) Soit l'application $f: [0; +\infty[\to \mathbb{R}$

$$x \to \frac{x^2}{x^2 + 1}$$

1) Trouvons l'intervalle I tel que $I = f([0; +\infty[$

On a
$$f(x) = \frac{x^2}{x^2 + 1}$$
 => $f'(x) = \frac{2x}{(x^2 + 1)^2}$ => $\forall x \in [0; +\infty[, f'(x) > 0])$

Alors $\forall x \in [0; +\infty[$, f est strictement croissante de $[0; +\infty[$ vers l'intervalle :

$$J = f([0; +\infty[)] \cdot \text{Avec } f(0) = 0 \text{ et } \lim f(x) = 1$$

$$x \to +\infty$$

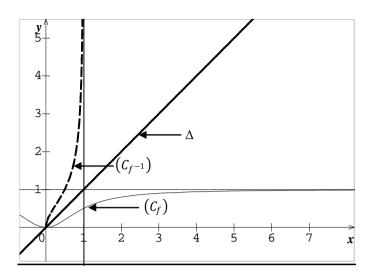
$$=> J = f([0; +\infty[) = [0; 1[$$

- 2) Montrons que f est une bijection de $[0; +\infty[$ sur J. f étant strictement croissante sur $[0; +\infty[$, alors elle réalise une bijection de $[0; +\infty[$ vers J.
- 3) Représentons graphiquement la courbe (C_f) de la fonction f et celle de sa bijection réciproque $(C_{f^{-1}})$ de f^{-1} , dans le même repère orthonormé.

Pour la construction (C_f) et $(C_{f^{-1}})$, se référer au théorème suivant :

Théorème:

La courbe représentative d'une fonction et celle de sa fonction réciproque sont symétrique par rapport à la première bissectrice Δ d'équation y = x.



<u>Problème</u>.....(10 points)

Partie A:

Soit la fonction g définie sur] 0; $+\infty$ [par $g(x) = -x^2 + 1 - \ln x$

1) Dressons le tableau de variation de g.

$$\lim g(x) = \lim -x^2 + 1 - \ln x = -(0)^2 + 1 - (-\infty) = +\infty$$

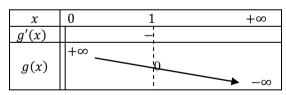
$$x \to 0$$
 $x \to 0$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} -x^2 + 1 - \ln x = -(+\infty)^2 + 1 - (+\infty) = -\infty - \infty = -\infty$$

$$x \to +\infty$$
 $x \to +\infty$

$$g(x) = -x^2 + 1 - \ln x \Rightarrow g'(x) = -2x - \frac{1}{x} = -\left(2x + \frac{1}{x}\right).$$

Alors $\forall x \in]0$; $+\infty[g'(x) < 0$. D'où le tableau de variation de g est le suivant :



2) Calculons g(1) puis en déduis le signe de g(x) suivant les valeurs de x.

$$g(x) = -x^2 + 1 - \ln x \Rightarrow g(1) = 0$$

Alors d'après le tableau de variation de g, on a :

$$\forall x \in]0$$
; 1[$g(x) > 0$ et $\forall x \in]1$; $+\infty[g(x) < 0$

Partie B:

Soit la fonction f définie sur]0; $+\infty[$ par $f(x) = -\frac{1}{2}x + 1 + \frac{\ln x}{2x}$ et (C) sa courbe dans le repère orthonormé $(0; \vec{i}; \vec{j})$ (unité graphique 2 cm)

1) Dressons le tableau de variation de f.

$$f(x) = -\frac{1}{2}x + 1 + \frac{\ln x}{2x}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} -\frac{1}{2}x + 1 + \frac{\ln x}{2x} = -\frac{1}{2}(0) + 1 + \frac{1}{2}(-\infty) = -\infty$$

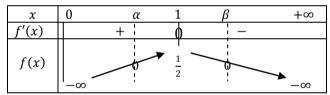
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -\frac{1}{2}x + 1 + \frac{\ln x}{2x} = -\frac{1}{2}(+\infty) + 1 + \frac{1}{2}(0) = -\infty$$

$$f(x) = -\frac{1}{2}x + 1 + \frac{\ln x}{2x} = f'(x) = -\frac{1}{2} + \frac{1 - \ln x}{2x^2} = \frac{-x^2 + 1 - \ln x}{2x^2} = \frac{g(x)}{2x^2}$$

 $\forall x \in]0$; $+\infty[$, $2x^2 > 0$. Alors le signe de f'(x) dépend du signe de g(x).

Or d'après Partie A 2), on a :

$$\forall x \in] \ 0 \ ; \ 1[\ g(x) > 0 \Rightarrow \ \forall x \in] \ 0 \ ; \ 1[\ f'(x) > 0$$
 et $\forall x \in] \ 1 \ ; \ +\infty[\ g(x) < 0 \Rightarrow \forall x \in] \ 1 \ ; \ +\infty[\ f'(x) < 0$



2) Démontre que l'équation f(x) = 0 admet deux solutions α et β avec $(\alpha < \beta)$ D'après le tableau de variation de f, $\forall x \in]0$; 1[f est définie, continue et strictement croissante de l'intervalle]0; 1[vers $]-\infty; \frac{1}{2}[$.

Alors l'équation f(x) = 0 admet une première solution α De même, $\forall x \in]1$; $+\infty[f]$ est définie, continue et strictement décroissante de l'intervalle]1; $+\infty[v]$ vers $]-\infty; \frac{1}{2}[f]$. Alors l'équation f(x) = 0 admet une deuxième solution β

3) a) Montrons que la droite (Δ)d'équation $y=-\frac{1}{2}x+1$ est asymptote à la courbe (C) de f. La droite (Δ)d'équation $y=-\frac{1}{2}x+1$ est asymptote à la courbe (C) de f si et seulement si $\lim_{x \to +\infty} f(x) - y = 0$

$$\lim_{x \to +\infty} f(x) - y = \lim_{x \to +\infty} \left(-\frac{1}{2}x + 1 + \frac{\ln x}{2x} \right) - \left(-\frac{1}{2}x + 1 \right) = \lim_{x \to +\infty} -\frac{1}{2}x + 1 + \frac{\ln x}{2x} + \frac{1}{2}x - 1$$

$$x \to +\infty \qquad x \to +\infty$$

$$= \lim_{x \to +\infty} \frac{\ln x}{2x} = \lim_{x \to +\infty} \frac{1}{2} \cdot \frac{\ln x}{x} = \frac{1}{2}(0) = 0$$

$$x \to +\infty$$
 $x \to +\infty$

 $x \to +\infty$ $x \to +\infty$ D'où la droite (Δ) d'équation $y = -\frac{1}{2}x + 1$ est asymptote à la courbe (C) de f

- b) Etudions le signe de $f(x) \left(-\frac{1}{2}x + 1\right)$ puis en déduis la position de (C) et (Δ). L'étude du signe de $f(x) \left(-\frac{1}{2}x + 1\right)$ nous permet d'en déduis que :
 $\forall x \in] \ 0$; 1[; (C) est en dessous de la droite (Δ)
- $\forall x \in]1; +\infty[; (C) \text{ est au dessus de la droite } (\Delta)$
- 4) Traçons (C) et (Δ) dans le même repère.

