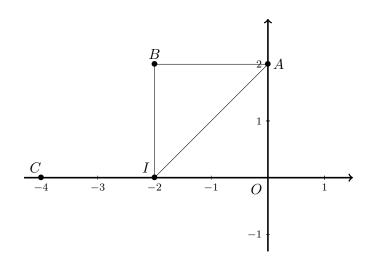
Correction bac 2016 Série D

Exercice

- 1 $1+i=\sqrt{2}\,\mathrm{e}^{i\frac{\pi}{4}}$. D'où $z'=\sqrt{2}\,\mathrm{e}^{i\frac{\pi}{4}}z$. Althur Harther Lift of C'est donc upo L'application S est de la forme $z - z_0 = \sqrt{2} e^{i\frac{\pi}{4}} (z - z_0)$. C'est donc une similitude plane directe de centre $z_0=0$, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$.
- **2** Les affixes z_B et z_C des points B et C sont respectivement donnés par : $z_B = (1+i) \times 2i = -2 + 2i.$ $z_C = (1+i)(-2+2i) = -4.$

|3|



4 I a pour affixe : $z_I = \frac{z_O + z_C}{2} = -2$. $|z_A - z_B| = 2$ et $|z_I - z_B| = 2$. On en déduit que BA = BI. De plus, $(\overrightarrow{BI}, \overrightarrow{BA}) \equiv \arg\left(\frac{z_A - z_B}{z_I - z_B}\right) [2\pi] = \arg(i) [2\pi] = \frac{\pi}{2} [2\pi]$. On en déduit que $(BI) \perp$ (BA).

Par conséquent, le triangle ABI est rectangle isocèle en B.

5 z_A, z_B et z_C annule le polynôme $(z - z_A)(z - z_B)(z - z_C)$. $(z - z_A)(z - z_B)(z - z_C) = (z - 2i)(z + 4)(z + 2 - 2i)$ $= [z^2 + (4-2i)z - 8i](z + 2 - 2i)$ $= z^{3} + [(2-2i) + (4-2i)]z^{2} + [(4-2i)(2-2i) - 8i]z - 8i(2-2i)$ $= z^3 + (6 - 4i)z^2 + (-20i + 4)z - 16i - 16$

Exercice 2

1 Calculons f(i)

$$f(\vec{j}) = 3\vec{i} - 2\vec{j}$$
. On en déduit que : $\vec{i} = \frac{1}{3}f(\vec{j}) + \frac{2}{3}\vec{j}$.

D'où
$$f(\vec{i}) = f\left(\frac{1}{3}f(\vec{j}) + \frac{2}{3}\vec{j}\right)$$

$$= \frac{1}{3}f^2(\vec{j}) + \frac{2}{3}f(\vec{j}) \text{ car } f \text{ est un endomorphisme sur } \mathbb{R}$$

$$= \frac{1}{3}\vec{j} + \frac{2}{3}(3\vec{i} - 2\vec{j})$$

$$= 2\vec{i} - \vec{j}$$

D'où
$$f(\vec{i}) = 2\vec{i} - \vec{j}$$
.

Calculons $f \circ f(\vec{i})$

$$f(f(\vec{i})) = f(2\vec{i} - \vec{j})$$

$$f \circ f(\vec{i}) = 2f(\vec{i}) - f(\vec{j})$$

$$= 2(2\vec{i} - \vec{j}) - (3\vec{i} - 2\vec{j})$$

$$= \vec{i}$$

 (\vec{i}, \vec{j}) est une base de \mathbb{R}^2 .

De plus, $f \circ f(\vec{i}) = \vec{i}$ et $f \circ f(\vec{i}) = \vec{i}$.

On en déduit que f est une symétrie vectorielle.

- 3 a. Un automorphisme est un endomorphisme bijectif.
 - **b.** Comme $f \circ f = id_{\mathbb{R}^2}$, on en déduit que $f^{-1} = f$ et par conséquent f est bijectif. D'où f est un automorphisme involutif.
 - \mathbf{c} . Déterminons d'abord l'expression analytique de f.

Soit $M = x\vec{i} + y\vec{j}$ un vecteur de \mathbb{R}^2 et M'(x', y') son image par f. Alors,

$$f(x\vec{i} + y\vec{j}) = x'\vec{i} + y'\vec{j} \iff xf(\vec{i}) + yf(\vec{j}) = x'\vec{i} + y'\vec{j}$$

$$\iff x(2\vec{i} - \vec{j}) + y(3\vec{i} - 2\vec{j}) = x'\vec{i} + y'\vec{j}$$

$$\iff (2x + 3y)\vec{i} + (-x - 2y)\vec{j} = x'\vec{i} + y'\vec{j}$$

D'où l'expression analytique de f: $\begin{cases} x' = 2x + 3y \\ y' = -x - 2y \end{cases}$

Base de f

La base de f est l'ensemble : $\{\overrightarrow{u} \in \mathbb{R}^2 / f(\overrightarrow{u}) = \overrightarrow{u}\}.$

Soit $\overrightarrow{u}(x,y)$ un élément de la base de f.

$$f(\overrightarrow{u}) = \overrightarrow{u} \iff \begin{cases} 2x + 3y = x \\ -x - 2y = y \end{cases} \iff x + 3y = 0.$$
 La base de f est la droite vectoriel d'équation $x + 3y = 0$, engendrée par le vecteur

(-3,1).

Direction de f

La direction de f est l'ensemble $\{\overrightarrow{u} \in \mathbb{R}^2 / f(\overrightarrow{u}) = -\overrightarrow{u}\}.$

Soit $\overrightarrow{u}(x,y)$ un élément de la direction de f.

b.

$$f(\overrightarrow{u}) = -\overrightarrow{u} \iff \begin{cases} 2x + 3y = -x \\ -x - 2y = -y \end{cases} \iff x + y = 0.$$

La direction de f est la droite vectorielle d'équation x + y = 0, engendrée par le vecteur (-1,1).

a. $\det_{\mathscr{B}}(\overrightarrow{u}, \overrightarrow{v}) = \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} = -1$

 $\det_{\mathscr{B}}(\overrightarrow{u}, \overrightarrow{v}) = \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = -1$ Comme le déterminant de la famille $\mathscr{B} = \{\overrightarrow{u}, \overrightarrow{v}\}$ dans la base $\mathscr{B} = (\overrightarrow{i}, \overrightarrow{j})$ est non nul, alors \mathscr{B}' est une base de \mathbb{R}^2

Du système d'équations : $\begin{cases} 2\vec{i} - \vec{j} = \overrightarrow{u} \\ -3\vec{i} + \vec{i} = \overrightarrow{v} \end{cases}, \text{ on en déduit que } \vec{i} = -\overrightarrow{u} - \overrightarrow{v}.$

D'où
$$f(\overrightarrow{u}) = f(2\overrightarrow{i} - \overrightarrow{j})$$

 $= 2f(\overrightarrow{i}) - f(\overrightarrow{j})$
 $= 2(2\overrightarrow{i} - \overrightarrow{j}) - (3\overrightarrow{i} - 2\overrightarrow{j})$
 $= \overrightarrow{i}$
 $= -\overrightarrow{u} - \overrightarrow{v}$

D'autre part, le calcul direct de $f(\overrightarrow{v})$ donne :

$$f(\overrightarrow{v}) = f(-3\overrightarrow{i} + \overrightarrow{j})$$

$$= -3f(\overrightarrow{i}) + f(\overrightarrow{j})$$

$$= -3(2\overrightarrow{i} - \overrightarrow{j}) + (3\overrightarrow{i} - 2\overrightarrow{j})$$

$$= -3\overrightarrow{i} + \overrightarrow{j}$$

$$= \overrightarrow{v}$$

 $\begin{array}{ccc} f(\vec{u}) & f(\vec{v}) \\ \downarrow & \downarrow \\ \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} & \leftarrow \text{coordonn\'ee selon } \vec{u} \\ \leftarrow \text{coordonn\'ee selon } \vec{v} \end{array}$ Ainsi la matrice de f dans la base \mathscr{B}' est :

Exercice 3

- $\lim_{x \to 0_{+}} f(x) = +\infty$; $\lim_{x \to +\infty} f(x) = 1$.
- Comme $\lim_{x\to 0_+} f(x) = +\infty$, alors la courbe ($\mathscr C$) de f admet une asymptote verticale d'équation x = 0.

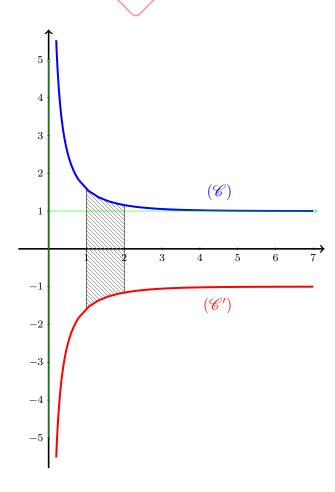
Comme $\lim_{x\to +\infty} f(x)=1$, alors la courbe ($\mathscr C$) de f admet une asymptote horizontale d'équation y=1.

- **a.** $\forall x \in \mathbb{R}_+^*, \quad f'(x) = \frac{e^x(e^x 1) e^x e^x}{(e^x 1)^2} = \frac{e^x(e^x 1) e^x}{(e^x 1)^2}.$
 - **b.** $\forall x \in \mathbb{R}_+^*$, f'(x) < 0 et f est strictement décroissante sur \mathbb{R}_+^* .

c.

x	$0 + \infty$
f'(x)	- /
f(x)	+\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

4



- 5 Voir figure ci-dessous.
- $\int_{1}^{2} (f(x) g(x)) dx = 2 \int_{1}^{2} \frac{e^{x}}{e^{x} 1} dx = 2 \left[\ln(e^{x} 1) \right]_{1}^{2} = 2 \ln(e + 1) \text{ u.a} = 2 \ln(e + 1) \text{ cm}^{2}$

Exercice 4

Nous noterons $(x_i, n_{i\bullet})$, les couples qui définissent la distribution marginale de la variable X,

et $(y_j, n_{\bullet j})$ les couples qui définissent la distribution marginale de la variable Y. Dans ce cas, on a : $\sum_i n_{i \bullet} = \sum_j n_{\bullet j}$ que l'on pose égal à N.

1

Loi marginale de X.

X	-1	1	2
n_{iullet}	m+2	3	n+5

Loi marginale de Y.

Y	0	1	2
$n_{ullet j}$	4	m+3	n+3

2

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{3} n_{i \bullet} x_{i} = \frac{(m+2) \times (-1) + 3 \times 1 + (n+5) \times 2}{m+n+10} = \frac{-m+2n+11}{m+n+10}.$$

$$\overline{Y} = \frac{1}{N} \sum_{j=1}^{3} n_{\bullet j} y_{j} = \frac{4 \times 0 + (m+3) \times 1 + (n+3) \times 2}{m+n+10} = \frac{m+2n+9}{m+n+10}.$$

Les coordonnées du point moyen $(\overline{X}, \overline{Y})$ en fonction de m et n vérifient :

$$\frac{-m+2n+11}{m+n+10} = 1$$
 et $\frac{m+2n+9}{m+n+10} = 1$. D'où $n=1$ et $m=1$.

a. L'équation de régression linéaire de Y en X est donnée par l'équation : Y = aX + b où $a = \frac{\text{Cov}(X,Y)}{\text{V}(X)}$ et $b = \overline{Y} - a\overline{X}$.

Les calculs de a et b donnent : $a = \frac{\frac{-1}{12}}{\frac{1}{2}} = -\frac{1}{6}$; $b = 1 - \left(-\frac{1}{6}\right) = \frac{7}{6}$.

D'où l'équation de la droite de régression linéaire $Y = -\frac{1}{6}X + \frac{7}{6}$.

b. Le coefficient de corrélation linéaire entre X et Y est :

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}} = \frac{-\frac{1}{12}}{\sqrt{\frac{1}{2}}\sqrt{\frac{1}{6}}} = -\frac{\sqrt{3}}{6}.$$

