Sujet bac 2012 - Série D

Exercice 1

4 points

On considère la série statistique à double variable X et Y définie par le tableau ci-après :

X	-2	0	1	a	4
Y	-10	-8	b	0	12

- 1 Déterminer les réels a et b pour que le point moyen G du nuage statistique, ait pour coordonnées (1; -2).
- 2 Dans la suite, on prendra a = 2 et b = -4.
 - a. Représenter graphiquement les points du nuage de cette série statistique
 - **b.** Déterminer l'équation de la droite de régression de X en Y.
 - \mathbf{c} . Calculer le coefficient de corrélation linéaire entre X et Y, puis interpréter le résultat.

Exercice 2

4 points

1 Résoudre dans l'ensemble $\mathbb C$ des nombres complexes, l'équation :

$$(E): \quad z^2 + 8\sqrt{3} - 8i = 0$$

- a. En utilisant la forme trigonométrique.
- **b.** En utilisant la forme algébrique. On pourra admettre que $8 + 4\sqrt{3} = (\sqrt{2} + \sqrt{6})^2$
- **2** Placer les images des solutions z_1 et z_2 de (E) sur un cercle trigonométrique.
- **3** Déduire de ce qui précède, la valeur exacte de $\cos(\frac{5\pi}{12})$ et $\sin(\frac{5\pi}{12})$.

Problème

12 points

Partie A

- 1 Résoudre l'équation différentielle : y'' + 2y' + y = 0.
- **2** Déterminer la solution particulière u, sachant que u(0) = 1 et u'(0) = 0.

Partie B

Soit f, la fonction numérique de la variable réelle x définie par :

$$f(x) = \begin{cases} (x+1)e^{-x} & \text{si } x \le 0\\ 1 - 2x + x \ln x & \text{si } x > 0 \end{cases}$$

On désigne par (\mathscr{C}) la courbe représentative de f dans le repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan d'unité graphique : 2 cm.

- 3 Préciser l'ensemble de définition de f
- 4 Étudier la continuité et la dérivabilité de f en x = 0.
- $\mathbf{5}$ Étudier les variations de f. On dressera un tableau de variation de f.
- 6 Pour $x \leq 0$, déterminer les coordonnées du point d'intersection de la courbe (\mathscr{C}) avec l'axe des abscisses et écrire une équation cartésienne de la tangente (\mathscr{T}) à (\mathscr{C}) en ce point.
- Démontrer que l'équation f(x) = 0 admet une solution unique $\alpha \in]6; 7[$. On ne demande pas de calculer α .
- 8 a. Étudier les branches infinies à (\mathscr{C}) .
 - **b.** Tracer la courbe (\mathscr{C}) de f et la droite (\mathscr{T}) .

Partie C

Soit h la fonction numérique de la variable réelle x, définie par :

$$\forall x \in \mathbb{R} \quad h(x) = -f(x)$$

- 9 a. Dresser le tableau de variation de h.
 - **b.** Tracer la courbe (\mathscr{C}') représentative de h dans le même repère que (\mathscr{C}) de f.
 - **c.** Calculer en cm², l'aire \mathscr{A} du domaine (\mathscr{D}) limité par les courbes (\mathscr{C}); (\mathscr{C}') et les droites d'équations x = -1; x = 0.

