Sujet bac 2011 - Série D

Exercice 1

4 points

L'espace vectoriel \mathbb{R}^3 étant rapporté à une base $(\vec{i}, \vec{j}, \vec{k})$, on considère l'application f de \mathbb{R}^3 dans \mathbb{R}^3 qui, à tout vecteur $\overrightarrow{u}(x, y, z)$ associe le vecteur $\overrightarrow{u}' = f(\overrightarrow{u})$ dont les composantes (x', y', z') dans la base $(\vec{i}, \vec{j}, \vec{k})$ sont définies par :

$$\begin{cases} x' = -x + ay + 2z \\ y' = x + 2y + z & a \in \mathbb{R} \\ z' = x + y \end{cases}$$

- **1** Écrire la matrice de l'application f dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- Pour quelles valeurs de a, f est-elle bijective?
- 3 Dans la suite, on pose a = 1.
 - a. Déterminer l'ensemble \mathscr{B} des vecteurs de \mathbb{R}^3 invariants par f.
 - **b.** Déterminer le noyau $\operatorname{Ker} f$ de f et l'image $\operatorname{Im} f$ de f. En déduire une base pour chacun des sous-espaces.
- Soit \overrightarrow{u} un vecteur de \mathbb{R}^3 de composantes $(1, \alpha, \beta)$ dans la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Calculer α et β pour que $\overrightarrow{u} \in \text{Ker } f$.

Exercice 2

4 points

On considère dans l'ensemble $\mathbb C$ des nombres complexes, l'équation :

$$(E): Z^2 - (1+3i)Z + 4 + 4i = 0$$

- Résoudre dans \mathbb{C} , l'équation (E). On appellera Z_1 la solution imaginaire pure et Z_2 l'autre solution.
- Dans le plan complexe (\mathscr{P}) rapporté au repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les quatre points A, B, C, D d'affixes respectives 3; 4i; -2+3i; 1-i.
 - a Placer les points A, B, C et D dans le plan.
 - **b** Calculer les affixes des vecteurs \overrightarrow{AB} , \overrightarrow{DC} , \overrightarrow{CB} ; \overrightarrow{DA} .
 - ${f c}$ En déduire la nature du quadrilatère ABCD.

<u>Problème</u>

12 points

Partie A

1 Montrer qu'il existe deux nombres réels a et b tels que :

$$\forall\,t\in\,\mathbb{R}\setminus\{-1\}\;,\quad \frac{1-t}{1+t}=a+\frac{b}{1+t}$$

A A Lift Hear Hear Lord of Day

Partie B

Soit f la fonction numérique de la variable réelle x définie par :

$$f(x) = -x + \ln(x+1)^2$$
 où la désigne le logarithme népérien

- **1** Donner l'ensemble de définition E_f de f.
- 2 Déterminer les variations de f.
- 3 Dresser le tableau de variation de f.
- 4 Montrer que l'équation f(x) = 0 admet une solution unique α dans l'intervalle [2; 3].
- **5** Calculer f(x) et f'(x) pour les valeurs de x suivantes : -2 ; $-\frac{3}{2}$; 0 ; 5.
- **6** Étudier les branches infinies à (\mathscr{C}) , courbe représentative de f.
- 7 Tracer la courbe représentative (\mathscr{C}) de f dans un plan (\mathscr{P}) muni d'un repère orthonormé (O, \vec{i}, \vec{j}) d'unité graphique 1 cm, ainsi que les tangentes à cette courbe aux points d'abscisses -2 et 0.

Partie C

Soit h, la fonction définie par h(x) = -f(x) pour tout $x \in]-1; +\infty[$.

- 1 Dresser le tableau de variation de h.
- **2** Tracer (\mathscr{C}') la courbe de la fonction h dans le même repère que (\mathscr{C}) .

