Bac Burkina Faso 2022

Mathématiques Série A4

 $\begin{array}{c} \text{1er tour} \\ \text{Dur\'ee}: 3 \text{ heures} \\ \text{Coefficient}: 3 \end{array}$

Les calculatrices ne sont pas autorisées.

Exercice 1 (5 points)

On considère la suite numérique (U_n) définie par $U_n = \frac{2n+5}{3}$ pour tout $n \in \mathbb{N}$.

- 1-a) Démontrer que la suite (U_n) est une suite arithmétique dont on précisera le premier terme et la raison.
- b) Calculer , en fonction de n , le réel $S_n' = U_0 + U_1 + U_2 + \cdots + U_n$.
- 2) On considère la suite (V_n) définie par $V_n=e^{-U_n}$.
- a) Démontrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme .
- b) Calculer $\lim_{n \to +\infty} V_n$.
- c) Calculer en fonction de n , le réel $S_n = V_0 + V_1 + V_2 + \cdots + V_n$.

 $\underline{\mathbf{N.B}}$: On donne Si 0 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$.

Exercice 2 (6 points)

Le tableau ci-dessous donne le nombre de minutes passées à étudier un soir par les élèves d'une classe de Terminale A .

Temps	[0, 20[[20, 40[[40, 60[[60, 80[[80, 100[[100, 120[
Effectifs	5	8	3	13	11	10

- 1-a) Quelle est la population étudiée?
- b) Quel est l'effectif total de cette population?
- c) Quelle est la classe modale?
- d) Le caractère étudié est-il quantitatif ou qualitatif?
- 2) Calculer la fréquence de la classe [20, 40].
- 3-a) Quel est le pourcentage des élèves qui étudient moins de 60 minutes?
- b) Donner dans un tableau, les centres de classes et les fréquences des classes exprimées en pourcentages.
- c) Calculer la moyenne de cette série statistique.
- 4) Construire l'histogramme des effectifs de cette série statistique .

Echelle:

- En abscisse 1cm pour 20mn .
- En ordonnées 1cm pour 1 élève .

Problème (9 points)

On considère la fonction numérique f définie par $f(x) = -1 + x + \frac{1}{2}e^{-x}$ et (\mathcal{C}_f) sa courbe représentative dans un repère orthonormal (O, \vec{i}, \vec{j}) , unité graphique **1cm**.

- 1-a) Déterminer le domaine de définition D_f de la fonction f .
- b) Calculer les limites de f en $-\infty$ et en $+\infty$ (On rappelle que $\lim_{x\to -\infty} xe^x = 0$)
- 2) Montrer que la droite (Δ) : y=x-1 est asymptote oblique à (\mathcal{C}_f) en $+\infty$.
- 3) Etudier la position relative de (C_f) par rapport à (Δ) .
- 4-a) Calculer la dérivée f'(x) sur D_f .
- b) Etudier le signe de f'(x) puis déduire le sens de variation de f.
- c) Dresser le tableau de variation de f.
- 5) Déterminer une équation de la tangente (T) à la courbe (\mathcal{C}_f) au point d'abscisse x=0.
- 6) Construire la courbe (C_f) , la droite (Δ) et la tangente (T) dans le repère (O, \vec{i}, \vec{j}) .

On donne :
$$\begin{cases} f(1) \approx 0, 2 & f(-\ln 2) \approx -0, 7 \\ f(2) \approx 1, 1 & f(-2) \approx 0, 7 \end{cases}$$
.

Correction

Exercice 1

1-a) Pour tout $n \in \mathbb{N}$:

$$U_n = \frac{2n+5}{3} = \frac{2}{3}n + \frac{5}{3}$$

Donc:

$$(U_n)$$
 est une suite arithmétique de raison $r=\frac{2}{3}$ et de premier terme $U_0=\frac{5}{3}$

b) D'après le cours, la somme des n+1 premiers termes de la suite arithémtique (U_n) est :

$$S'_n = U_0 + U_1 + U_2 + \dots + U_n = (n+1)\frac{U_0 + U_n}{2}$$

Donc
$$S'_{n} = (n+1)\frac{U_{0} + U_{n}}{2} = \frac{1}{2}(n+1)\left(\frac{5}{3} + \frac{2n+5}{3}\right)$$

$$= \frac{1}{2}(n+1) \times \frac{1}{3}(10+2n) = \frac{1}{2}(n+1) \times \frac{1}{3} \times 2(5+n)$$

D'où:

Pour tout
$$n \in \mathbb{N}$$
: $S'_n = \frac{(n+1)(n+5)}{3}$

2-a) On a
$$V_0 = e^{-U_0} = e^{-\frac{5}{3}}$$

De plus , puisque la fonction exp ne s'annule pas sur $\mathbb R$, alors , pour tout entier naturel n , $V_n=e^{-U_n}
eq 0$

Donc , pour tout $n \in \mathbb{N}$, on peut calculer :

$$\frac{V_{n+1}}{V_n} = \frac{e^{-U_{n+1}}}{e^{-U_n}} = e^{-(U_{n+1} - U_n)} = e^{-\frac{2}{3}}$$

Le quotient entre deux termes consécutifs est donc constant, donc :

La suite (V_n) est géométrique de raison $q=e^{-\frac{2}{3}}$ et de premier terme $V_0=e^{-\frac{5}{3}}$

b) (V_n) est géométrique de raison $q=e^{-\frac{2}{3}}$ et de premier terme $V_0=e^{-\frac{5}{3}}$, alors :

Pour tout entier naturel n , $V_n=V_0q^n=e^{-\frac{5}{3}}\left(e^{-\frac{2}{3}}\right)^n$

Or , puisque
$$-\frac{2}{3} < 0$$
 , alors $0 < e^{-\frac{2}{3}} < 1$, et donc $\lim_{n \to +\infty} \left(e^{-\frac{2}{3}}\right)^n = 0$.

On en déduit que :

c) D'après le cours, la somme des n+1 premiers termes de la suite géométrique (V_n) de raison $q=e^{-\frac{2}{3}}\neq 1$ est :

$$S_n = V_0 + V_1 + V_2 + \dots + V_n = V_0 \frac{1 - q^{n+1}}{1 - q}$$

D'où:

Pour tout
$$n \in \mathbb{N}$$
: $S_n = e^{-\frac{5}{3}} \frac{1 - \left(e^{-\frac{2}{3}}\right)^{n+1}}{1 - e^{-\frac{2}{3}}}$

Exercice 2

1-a) Directement:

La population étudiée est les élèves d'une classe de terminale A

b) L'effectif total noté N est la somme de tous les effectifs, alors :

$$N = 5 + 8 + 3 + 13 + 11 + 10 \iff \boxed{N = 50}$$

L'effectif total de cette population est N=50

c) La classe modale est la classe dont l'effectif est le plus élevé qui est 13, donc :

d) Le caractère statistique étudié est le nombre de minutes passées à étudier un soir .

Les réponses obtenues sont des nombres , regroupés sous forme de classes , alors :

Le caractère étudié est quantitatif (continu)

2) La fréquence de la classe [20, 40], notée $f_{[20,40[}$ correspond au pourcentage d'élèves qui étudient le soir entre 20 et 40 min : Il y a 8 élèves sur 50 qui sont dans cette tranche .

Soit
$$f_{[20,40[} = \frac{8}{50} \times 100 \Rightarrow f_{[20,40[} = 16\%$$

La fréquence de la classe [20,40 [est : $f_{[20,40[}=16\%$

3-a) Le nombre des élèves qui étudient moins de 60 minutes est la somme des effectifs des classes [0, 20], [20, 40] et [40, 60]

Soit 5+8+3=16 élèves sur 50 , ce qui donne en pour centage : $\frac{16}{50}\times 100=32\%$

32% des élèves étudient moins de 60 minutes le soir

b) On calcule les centres C et les fréquences f de chaque classe :

• La classe
$$[20, 40[$$
 : $C_{[20,40[} = \frac{20+40}{2} = 30$, $f_{[20,40[} = 16\%$ d'après 2)

• La classe
$$[40,60[$$
 : $C_{[40,60[} = \frac{100}{2} = 50$, $f_{[40,60[} = \frac{3}{50} \times 100 = 6\%]$

• La classe
$$[60, 80[$$
 : $C_{[60,80[} = \frac{140}{2} = 70$, $f_{[60,80[} = \frac{13}{50} \times 100 = 26\%]$

• La classe
$$[80, 100[$$
 : $C_{[80, 100[} = \frac{180}{2} = 90$, $f_{[80, 100[} = \frac{11}{50} \times 100 = 22\%]$

• La classe
$$[100, 120[$$
 : $C_{[100, 120[} = \frac{220}{2} = 110$, $f_{[100, 120[} = \frac{10}{50} \times 100 = 20\%]$

On regroupe les résultats dans le tableau suivant :

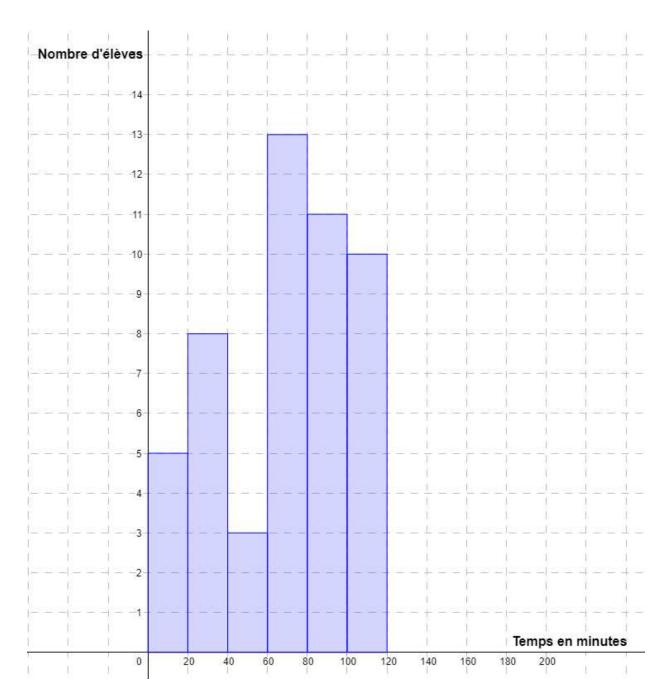
Temps	[0, 20[[20, 40[[40, 60[[60, 80[[80, 100[[100, 120[
Effectifs	5	8	3	13	11	10
Centres de classes	10	30	50	70	90	110
fréquences	10%	16%	6%	26%	22%	20%

c) Calculons la moyenne de cette série statistique :

$$\bar{m} = \frac{10 \times 5 + 30 \times 8 + 50 \times 3 + 70 \times 13 + 90 \times 11 + 110 \times 10}{50} = \frac{3440}{50} = 68, 8$$

La moyenne de cette série statistique est $\bar{m}=68,8$

4) L'histogramme des effectifs de cette série statistique :



Problème

Etude de la fonction
$$f$$
 définie par $f(x) = -1 + x + \frac{1}{2}e^{-x}$

1-a) La fonction exponentielle et les fonctions polynomiales étant définies sur $\mathbb R$, alors :

$$D_f = \mathbb{R} =]-\infty; +\infty[$$

b) La limite en
$$-\infty$$
:
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -1 + x + \frac{1}{2}e^{-x} = \lim_{x \to -\infty} e^{-x} \left(-e^x + xe^x + \frac{1}{2} \right)$$

On sait que :
$$\lim_{x \to -\infty} e^x = 0$$
 , $\lim_{x \to -\infty} x e^x = 0$ et $\lim_{x \to -\infty} e^{-x} = +\infty$
Donc $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^{-x} \left(-e^x + x e^x + \frac{1}{2} \right) = +\infty \left(0 + 0 + \frac{1}{2} \right) = +\infty$

$$\boxed{\lim_{x \to -\infty} f(x) = +\infty}$$

La limite en $+\infty$:

Puisque
$$\lim_{x \to +\infty} e^{-x} = 0$$
 et $\lim_{x \to +\infty} x = +\infty$
Alors $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -1 + x + \frac{1}{2}e^{-x} = -1 + \infty + 0 = +\infty$
$$\lim_{x \to +\infty} f(x) = +\infty$$

2) Soit (Δ) la droite d'équation y = x - 1

Calculons la limite de f(x) - y en $+\infty$:

$$\lim_{x \to -\infty} f(x) - y = \lim_{x \to -\infty} -1 + x + \frac{1}{2}e^{-x} - (x-1) = \lim_{x \to -\infty} \frac{1}{2}e^{-x} = 0 \quad \left(\text{ , en effet } \lim_{x \to +\infty} e^{-x} = 0 \right)$$

On en déduit que :

$$(\Delta): y = x - 1$$
est asymptote oblique à (\mathcal{C}_f) en $\, + \, \infty$

3) Il s'agit d'étudier le signe de f(x) - y sur \mathbb{R} , avec y = x - 1 l'équation de la droite (Δ)

Pour tout
$$x \text{ de } \mathbb{R} : f(x) - y = -1 + x + \frac{1}{2}e^{-x} - (x - 1) = \frac{1}{2}e^{-x}$$

Or , on sait que pour tout réel $x:e^{-x}>0$, donc f(x)-y>0 pour tout réel x

$$(\mathcal{C}_f)$$
 est au-dessus de la droite (Δ) sur $\mathbb R$

4-a) f est une fonction dérivable sur $\mathbb R$ car elle est la somme d'une fonction polynomiale et une fonction en exponentielle toutes les deux dérivables sur $\mathbb R$.

$$\forall x \in \mathbb{R} : f'(x) = \left(-1 + x + \frac{1}{2}e^{-x}\right)' = 1 + \frac{1}{2}\left(e^{-x}\right)' = 1 - \frac{1}{2}e^{-x}$$

Pour tout
$$x$$
 de \mathbb{R} : $f'(x) = \frac{2 - e^{-x}}{2}$

b) Le signe de f'(x) est celui de $2 - e^{-x}$

On a:
$$2 - e^{-x} = 0 \iff e^{-x} = 2 \iff -x = \ln 2 \iff x = -\ln 2$$

Donc:

D'où:

$$\forall x \in]-\infty; -\ln 2]: f'(x) \le 0$$

$$\forall x \in [-\ln 2; +\infty[: f'(x) \ge 0]$$

$$f'(-\ln 2) = 0$$

On en déduit que :

$$f$$
 est décroissante sur $]-\infty; -\ln 2]$
 f est croissante sur $[-\ln 2; +\infty[$

c) Les résultats de la question précédente permettent de dresser le tableau de variations de f:

x	$-\infty$	$-\ln 2$		$+\infty$
f'(x)	_	0	+	
	$+\infty$			$+\infty$
f	\backslash		7	
		$f(-\ln 2) = -\ln 2$	2	

Avec
$$f(-\ln 2) = -1 - \ln 2 + \frac{1}{2}e^{\ln 2} = -1 - \ln 2 + 1 = -\ln 2$$

5) Une équation de la tangente (T) à la courbe de f en x = 0 s'écrit :

$$(T): y = f'(0)(x-0) + f(0)$$

•
$$f'(0) = \frac{2 - e^{-0}}{2} = \frac{2 - 1}{2} = \frac{1}{2}$$

Avec :
$$f'(0) = \frac{2 - e^{-0}}{2} = \frac{2 - 1}{2} = \frac{1}{2}$$

$$f(0) = -1 + 0 + \frac{1}{2}e^{-0} = -1 + \frac{1}{2} \times 1 = -\frac{1}{2}$$

On en déduit :

$$(T): y = \frac{1}{2}x - \frac{1}{2}$$

6) La représentation graphique :

