SESSION DE 2019

Unité -- Progrès -- Justice

EPREUVE DE MATHEMATIQUES (2nd tour)

(Calculatrice non autorisée)

Durée: 2 heures Coefficient: 05

L'épreuve comporte deux (2) parties indépendantes à traiter obligatoirement.

PREMIERE PARTIE: (10 points)

Dans cette partie, toutes les questions sont indépendantes.

- I. Pour chacune des questions ci-dessous, écrire le numéro de la question suivi de la lettre correspondant à la bonne réponse.
 - 1) On considère dans $\mathbb{R} \times \mathbb{R}$ l'équation : 7x 5y 3 = 0. Un couple solution de l'équation ci-dessus est : (1pt)

a) (2;4)

b) (1; -2)

c) $\left(0; -\frac{3}{5}\right)$ d) $\left(-4; 5\right)$

2) Parmi les expressions suivantes, une seule est celle d'une application affine. Laquelle ? (0,5pt)

a) 2 - 3x

b) $3x^2 - 1$ c) $3\sqrt{x} + 4$

d) $-2 + x^2$

- 3) On donne la droite (Δ) d'équation : -x + 3y + 5 = 0. Le coefficient directeur de cette droite est: a) 3; b) $-\frac{1}{3}$; c) -1; d) $\frac{1}{3}$. (1pt)
- 4) EFG est un triangle rectangle en F tel que $EG = \sqrt{10}$ et $\cos \hat{E} = \frac{\sqrt{2}}{2}$. La longueur du côté [EF] vaut : a) 10 b) $\sqrt{5}$ c) $2\sqrt{5}$ d) $4\sqrt{5}$. (1pt)

II.

- 1) Soit g le polynôme défini par $g(x) = -12x^3 1 + 7x + x^5 3x^2 + 7x^4$. Ordonner g(x) suivant les puissances décroissantes de x. (0,5pt)
- 2) On donne le polynôme h tel que h(x) = (3 + 2x)(3 2x). Développer le polynôme h en utilisant l'identité remarquable qui convient. (0,5pt)
- 3) Résoudre dans R x R par la méthode des combinaisons linéaires le système suivant:

 $\begin{cases} 2x + y = 5 \\ x - 3y = 6 \end{cases}$ (1pt)

- 4) On définit l'application f par f(x) = -2x + 3. Représenter f dans un repère orthonormé (0, 1, 1). Unité graphique 1 cm. (1pt)
- 5) f est l'application définie par f(x) = |2x 4| + x + 1. Ecrire f(x) sans le symbole de la valeur absolue suivant les valeurs de x. (1pt)
- 6) A, B et C sont trois points alignés. On désigne par les points A', B' et C' les images respectives de A, B et C par une symétrie centrale. Justifier que les points A', B' et C' sont alignés. (0,5pt)

- 7) \vec{u} et \vec{v} sont deux vecteurs tels que $\vec{u} \begin{pmatrix} 2 \\ -\frac{3}{2} \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ \frac{5}{2} \end{pmatrix}$. Calculer les coordonnées du vecteur $\vec{u} + \vec{v}$. (1pt)
- 8) Une étude portant sur la taille d'un échantillon de nouveau-nés dans une maternité a donné les résultats suivants :

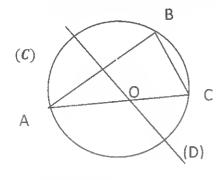
Taille	[45 : 50]	[50;55]	[55;60[[60;65[
Effectif	9	11	9	6

Construire l'histogramme des effectifs de cette série statistique. (1pt)

Echelle: 1cm pour 5 avec l'origine 45 (en abscisses).
1cm pour 1 avec l'origine 0 (en ordonnées).

DEUXIEME PARTIE: (10 points)

Exercice 1 (06 points)


Dans le plan est muni d'un repère orthonormé $(0, \vec{1}, \vec{j})$, on donne les points A(2; 3); B(6,5;0); C(7,5;-5). Unité graphique : 1cm.

- 1) Placer les points A, B et C. (0,75pt)
- 2) a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{OC} . (1pt)
 - b) En déduire que les droites (AB) et (OC) sont parallèles. (1pt)
- 3) Calculer les coordonnées du vecteur \overrightarrow{AO} puis en déduire que les vecteurs \overrightarrow{AO} et \overrightarrow{OC} sont orthogonaux. (1pt)
- 4) Quelle est la nature exacte du quadrilatère OABC ? Justifier. (0,75pt)
- 5) Soit (D) la droite d'équation 8x + 5.5y 33.5 = 0. Soient (x; y) les coordonnées d'un point de (D).
 - a) Calculer x pour y = 3. (0,5pt)
 - b) Calculer y pour x = 7,5. (0,5pt)
 - c) Construire alors la droite (D). (0,5pt)

Exercice 2 (04 points)

On considère la figure ci-dessous où (C) est le cercle de centre O et de diamètre [AC] et B un point du cercle tel que AB = 8cm et AC = 10cm.

N.B: La figure n'est pas à reproduire et n'est pas en dimensions réelles.

- 1) a) Justifier que le triangle ABC est rectangle en B. (1pt) b) Calculer BC. (1pt)
- 2) La droite (D) est parallèle à la droite (BC). Calculer le rapport de projection k de (AB) sur (AC) parallèlement à (D). (1pt)
- 3) a) Calculer le cosinus de l'angle $B\widehat{A}C(0,5pt)$
 - b) En déduire un encadrement de l'angle BÂC au degré près. (0,5pt)

On donne:

Angle Â	34°	35°	36°	37°	38°
cosÂ	0,8290	0,8192	0,8090	0,7986	0,7880