

Tutoriel : Apprendre le TI-basic pas-à-pas

Table des matières

Apprendre le TI-basic pas-à-pas
Introduction dans l'univers Texas Intruments
Le TI-Basic
Présentation de la calculatrice : les touches
Présentation de la calculatrice : l'écran
Tout un programme !
Créer un programme
Accéder au code du programme
Exécuter un programme
Gestion des programmes
Afficher du texte
Écrire sur sa calculatrice
Afficher du texte avec Disp
Afficher du texte avec Output
Effacer l'écran
Mini-TP : "Hello World"
Gérer les variables
Vous avez dit variable ?
Utiliser les variables
Interagir avec l'utilisateur
Mini-TP : Calculer le volume d'un cylindre
Les conditions
Le principe
Les tests
La condition "Si"
D'autres conditions
Mini-TP : Loi de Descartes
Les boucles
Le principe

https://www.sigmaths.net 1/109

Les boucles simples
La boucle par incrémentation
Mini-TP : Probabilité d'anniversaires identiques
Ordre de lecture du programme
Poser une étiquette
Se rendre à une étiquette
Mettre le programme en pause
Arrêter le programme avant la fin
Gérer l'appui sur les touches
Les numéros de touches
Récupérer le numéro de la touche pressée
Utilisations concrètes
TP : Créer son premier jeu
Le cahier des charges
Quelques indices pour procéder
Correction
Les fonctions en français
Bien utiliser le tableau
Le tableau de traduction

Apprendre le TI-basic pas-à-pas

Bonjour à vous, Zéros lecteurs !

Lors du passage du collège au lycée, vous devez généralement vous
équiper d'une calculatrice plus puissante (chez TI, on parle de
calculatrices graphiques). Elle gère généralement les graphiques,
permet la création de programmes, etc.
Bref, c'est un gros changement, et au début, on s'y perd un peu. :euh:

Nous allons donc essayer de faire en sorte que vous puissiez utiliser
tout le potentiel de programmation du TI-BASIC !

https://www.sigmaths.net 2/109

Si vous voulez plus de renseignements sur cette marque, je vous invite
à aller sur le site officiel de Texas Instruments
(http://education.ti.com/educationportal/sites/FRANCE/homePage/index.html)
(en français).

Introduction dans l'univers Texas Intruments

Parler de "l'univers Texas Instruments" est peut-être un peu fort, il
s'agit pourtant d'une marque très connue et importante de calculatrices
! Si vous êtes au lycée, vous avez peut-être remarqué qu'une autre
marque est en vogue : Casio. Il y a quelques années, les Hewlett
Packard était aussi recommandées dans les lycées, mais maintenant
on n'en entend presque plus parler. :euh:

Le TI-Basic

Qu'est ce que le TI-Basic ?

Comme vous avez pu le lire précédemment, vous êtes ici pour apprendre
le TI-Basic !

Il s'agit du langage de programmation des calculatrices graphiques de
chez TI. On peut décomposer le nom en deux parties : TI, comme le nom
du constructeur (quelle originalité :p), et Basic, qui indique qu'il appartient

Si votre calculatrice n'est pas une TI, ce tutoriel ne pourra pas
vous aider à vous y retrouver ! Votre calculatrice ne doit pas non
plus être une TI-89 ou plus (ce tutoriel ne s'applique que pour les
calculatrices graphiques, TI-84 et moins).

Ok, mais moi c'est Texas Instruments qui m'intéresse : ça se
passe comment chez eux, alors ?

Et... c'est quoi, le TI-Basic ?

https://www.sigmaths.net 3/109

à la famille des langages BASIC. Autrement dit, c'est un langage qui n'est
pas très compliqué à comprendre et à utiliser ; en revanche, il ne sera pas
très puissant ! Heureusement, les calculatrices ne sont pas très puissantes
; ce n'est donc pas bien grave.

Le TI-Basic dispose d'un avantage énorme : il est directement
programmable sur votre calculatrice. Cela signifie que vous pourrez même
programmer en cours. :-°

De quoi est-il capable ?

Bien qu'il soit assez limité (eh oui, hors de question de faire des jeux en
3D), il reste très pratique et fonctionnel. Il vous permettra ainsi de faire :

des jeux (en utilisant le mode Graphique, il est possible de faire de la
2D assez poussée) ;

des programmes de maths, de physique ;

...

Comme vous pouvez le constater, vous pourrez faire quelques trucs
pouvant être assez sympas. Et croyez-moi, c'est très agréable quand on
veut résoudre une équation du second degré sans se casser la tête, et
qu'un joli programme vous donne la réponse toute prête !

Et ça marche comment ?

En fait, c'est assez simple : il suffira d'écrire des instructions les unes à la
suite des autres et la calculatrice va bêtement faire ce qu'on lui
demande. Bien sûr, ces instructions doivent avoir un sens, il ne suffit pas
d'écrire ce qu'on veut en français pour que ça marche. Ce sont ces
instructions que VOUS allez apprendre !

Bon : allez, comme un exemple vaut mieux qu'un long discours :

https://www.sigmaths.net 4/109

:Prompt A

:Disp A

Notez que le code est notifié comme étant du Pascal. Ce n'est pas du tout
le cas, mais comme il n'existe pas de coloration syntaxique disponible pour
le TI-basic, on utilise celle du langage Pascal pour quand même avoir un
peu de couleur. :D

Pour le moment, ne nous intéressons pas au code, mais plutôt à la
manière dont il est écrit : votre calculatrice va lire la première ligne et
l'interpréter (Prompt A) puis, quand elle aura fini, elle passera à la
seconde ligne (Disp A) et ainsi de suite (sauf qu'ici, il n'y a que deux
lignes, il ne faudrait pas trop vous embrouiller dès le début ;)).
Pour votre curiosité, ce tout petit programme va vous demander d'entrer
un chiffre et vous l'affichera (même si cela ne sert pas à grand-chose :p),
mais vous comprendrez cela plus tard.

Plusieurs types de TI-basic

Eh oui, il existe plusieurs types de TI-basic. En effet, le TI-basic est
différent pour chaque génération de calculatrice. Nous étudions ici le TI-
basic des calculatrice graphiques 84 et inférieures.

Présentation de la calculatrice : les touches

Si vous disposez d'une TI-82 Stats.fr, votre TI-basic sera partiellement
traduit en français. Pour pouvoir suivre ce tuto, vous pouvez vous
reporter à l'annexe sur les fonctions en français
(http://www.siteduzero.com/tutoriel-3-122736-les-fonctions-en-
francais.html).

https://www.sigmaths.net 5/109

Nous allons dans ce tutoriel prendre comme calculatrice une TI-83 Plus,
puisqu'il semble que cela soit le modèle le plus répandu. Si vous avez un
autre modèle vous verrez qu'il n'y a pratiquement pas de différences. Sauf
pour la TI-82 Stats.fr, dont quasiment tout est traduit en français. Reportez-
vous à l'annexe citée ci-dessus pour pouvoir suivre ce tuto. ;)

Les touches graphiques

Elles permettent d'accéder à des menus du mode graphique.
On les verra en détail bien plus tard, car le mode graphique est compliqué
à assimiler.

Les touches d'édition

Elles permettent d'effectuer toutes sortes d'opérations sur le
fonctionnement général de la calculatrice.

Nous allons ici séparer les touches de la calculatrice en 4 groupes,
pour mieux les assimiler.

https://www.sigmaths.net 6/109

Les touches seconde () et alpha ()

Ces touches ne font rien en elles-mêmes, à part changer la forme du
curseur :

pour la touche

et

pour la touche

. Mais lorsque que le curseur a une de ces formes, la prochaine touche
que vous presserez aura un autre effet que celui produit habituellement :
vous activerez ce qui est écrit en haut de la touche pressée : en jaune
pour

(on les appelle opérations auxiliaires), et en bleu turquoise pour

.

Les flèches

La touche
suivie de
ou de
permet d'aller au début ou à la fin d'une expression.

https://www.sigmaths.net 7/109

Les touches

,

,

et

permettent respectivement de déplacer le curseur à gauche, sur la ligne du
dessus, à droite et sur la ligne du dessous.
Presser

alors que l'on est tout en haut de l'écran ramène le curseur au début de
l'expression.
Presser

alors que l'on est tout en bas de l'écran ramène le curseur à la fin de
l'expression.

La touche supprimer ()

Cette touche est l'abréviation de DELETE, qui veut dire supprimer en
anglais.
Cette touche a donc pour effet de supprimer le caractère sur lequel se
trouve le curseur.

Ces touches sont répétitives, c'est-à-dire que si vous laissez la touche
enfoncée, leur effet s'appliquera plusieurs fois.

https://www.sigmaths.net 8/109

, tout comme les flèches, est une touche répétitive.

Le touche effacer ()

Étrangement, cette touche se nomme "annuler" sur la TI-82 Stats.fr ;
pourtant, ne vous y trompez pas, cette touche est une touche de
suppression massive :pirate: :

si vous êtes en train d'écrire une expression, où que ce soit, elle
effacera toute votre expression ;

si vous êtes sur une ligne vide de l'écran principal, elle effacera
l'intégralité de cet écran.

Mais aussi, et c'est ce qui peut justifier pourquoi elle est traduite en
"annuler", la touche permet de quitter un menu de fonction avancée (que
l'on va voir dans un instant).

L'opération auxiliaire insérer ()

Cette combinaison de touche se nomme INS (pour INSERT, insérer en
français) et s'obtient en faisant

. Elle transforme le curseur en

et permet d'écrire de nouveaux caractères en repoussant les autres (c'est-
à-dire sans réécrire par-dessus).

https://www.sigmaths.net 9/109

La touche d'inconnue ()

Cette touche permet d'entrer directement l'inconnue du mode dans lequel
vous êtes.
Généralement, on est en mode fonction : "Y=f(X)", l'inconnue est alors X,
et la touche

affichera donc un X.
En paramétrique, l'inconnue est T, en polaire heta, et pour les suites n.

La touche de validation ()

Cette touche permet de valider une expression entrée, ou un choix dans
un menu. Elle permet aussi de passer à la ligne lorsque l'on édite un
programme.

Les touches de fonctions avancées

Ces touches permettent d'accéder à des menus qui vous présenteront des
fonctions bien pratiques.

Le menu mode ()

https://www.sigmaths.net 10/109

Ce menu permet de gérer les caractéristiques globales de la calculatrice
(degrés / radians, écriture normale / scientifique ...). Il est expliqué en
détail plus bas dans la page.

Le menu statistique ()

Comme son nom l'indique, il permet la gestion d'outils de statistiques (la
moyenne...).

Le menu mathématique ()

Il contient plein de fonctions très pratiques pour faire des maths (valeur
absolue, PGCD...).

Le menu des applications ()

Ce menu permet de lancer vos applications téléchargées ; la plus connue
étant le tableau périodique des éléments.

Le menu programme ()

Ce menu sert à gérer les programmes, ainsi qu'à la programmation.

Le menu variables ()

Sur les TI-82, TI-82 Stats et TI-82 Stats.fr, cette touche n'existe pas,
puisque ces calculettes ne peuvent pas télécharger d'applications. Il y
a à la place la touche matrice.

https://www.sigmaths.net 11/109

Ce menu permet d'accéder à toutes sortes de variables.

Les touches de calcul scientifique

Ces touches vous permettent simplement de faire des calculs, ce sont les
mêmes qui apparaissent sur vos calculatrices de collège.

Rapidement :

Touche Fonction
Opération
auxiliaire

Fonction

Inverse MATRX Le menu matrice

Trigonométrie : sinus SIN-1 Trigonométrie : arcsinus

Trigonométrie : cosinus COS-1
Trigonométrie :
arccosinus

Trigonométrie : tangente TAN-1
Trigonométrie :
arctangente

https://www.sigmaths.net 12/109

Touche Fonction
Opération
auxiliaire

Fonction

Puissance \pi Le nombre \pi

Carré ? Racine carrée

Ne pas confondre avec
la virgule des décimales.
Sert à séparer des
arguments dans une
fonction

EE Puissance de 10

Ouvrir une parenthèse
(pour la priorité)

{
Ouvrir une accolade
(pour les listes)

Fermer une parenthèse
(pour la priorité)

}
Fermer une accolade
(pour les listes)

Division e exp(1)

Logarithme 10x
Multiplication par une
puissance de 10

Le chiffre 7 un Une suite

Le chiffre 8 vn Une suite

Le chiffre 9 wn Une suite

Multiplication [
Ouvrir un crochet (pour
les matrices)

Logarithme népérien ex exp(x)

https://www.sigmaths.net 13/109

Touche Fonction
Opération
auxiliaire

Fonction

Le chiffre 4 L4 Une liste

Le chiffre 5 L5 Une liste

Le chiffre 6 L6 Une liste

Soustraction]
Fermer un crochet
(pour les matrices)

Stocker une valeur dans
un nombre

RCL
Donner la valeur d'une
variable lors d'une
saisie

Le chiffre 1 L1 Une liste

Le chiffre 2 L2 Une liste

Le chiffre 3 L3 Une liste

Addition MEM
Le menu de gestion de
mémoire

Allumer la calculatrice OFF Éteindre la calculatrice

Le chiffre 0 CATALOG
Un catalogue des
fonctions

La virgule décimale \iota
Un nombre complexe
dont le carré vaut -1

Opposé ANS
La dernière valeur
calculée

https://www.sigmaths.net 14/109

Présentation de la calculatrice : l'écran

Différents types d'écrans

On distingue en gros 4 types d'écrans.

L'écran principal

Vous tombez dessus par défaut lorsque vous allumez votre calculatrice.

C'est l'écran dans lequel vous rentrez vos calculs. La seule différence par
rapport à une calculatrice de collège, c'est qu'il contient plusieurs lignes.

Pour accéder à l'écran principal depuis tout autre menu, faites

(QUIT).

Le graphique

https://www.sigmaths.net 15/109

Cet écran est la grande nouveauté de la calculatrice graphique : vous
pouvez afficher des fonctions sur votre écran.
Ce type d'écran peut s'obtenir :

avec

: vous avez les courbes qui s'affichent et vous pouvez déplacer votre
curseur qui vous donne les coordonnées du point où le curseur est
placé ;

avec

: votre curseur se déplace sur les points que dessine la courbe. Vous
avez donc les coordonnées exactes de ces points.

Vous pouvez écrire vos fonctions dans la boîte de dialogue que vous
obtenez en faisant

.

La table

C'est un écran qui s'obtient en faisant

Ce n'est juste qu'un aperçu de l'écran graphique. C'est un point très
compliqué et nous y reviendrons bien plus tard.

https://www.sigmaths.net 16/109

. Il vous donne toutes les valeurs de f(x) pour un x donné.
Vous pouvez modifier les paramètres de la table (le pas et la valeur
initiale) en faisant

.

Les écrans d'options

Ce sont les écrans que vous obtenez lorsque vous allez dans un menu
(comme "math", par exemple). Ce type d'écran vous propose un choix que
vous devez aller chercher avec les flèches et en validant avec

. Vous pouvez aussi, lorsque c'est possible, appuyer sur la touche écrit à
gauche de la fonction. Par exemple, sur le screen du menu math ci-contre,
si vous voulez obtenir le 3 (la fonction cube), vous pouvez faire

ou tout simplement

.

Pour quitter un menu, faites
https://www.sigmaths.net 17/109

ou lancez un nouveau menu.

Les modes de la calculatrice

Votre calculatrice réagira différemment selon les paramètres que vous
aurez mis dans le menu mode (

).
Ce menu d'options est un peu spécial : chaque ligne représente un
paramètre. Pour vous déplacer, utilisez les flèches, puis validez par

.
Voici tous ces paramètres.

Notation numérique

Comme vous le savez sûrement (sinon renseignez-vous ça peut toujours
être utile ^^), on peut écrire un nombre de 3 façons :

comme vous le faites tout les jours, exemple : 56360 ;

en écriture scientifique, avec le même exemple : 5.636*104 ;

en écriture ingénieur, avec le même exemple : 56.36*103.

https://www.sigmaths.net 18/109

Ça tombe bien, la calculette a justement ce qu'il nous faut :zorro: : elle
dispose de 3 modes pour ces trois écritures :

Normal, pour l'écriture normale ;

Sci pour l'écriture scientifique ;

Eng pour l'écriture ingénieur.

Nombre de décimales

Float signifie virgule flottante : cela signifie que la calculatrice affichera le
nombre maximum de chiffres sur l'écran (dans le cas d'un nombre comme
1/3), c'est-à-dire un maximum de 10 chiffres plus le signe et le point
décimal.

Les chiffres que vous voyez à droite sur l'écran représentent une virgule
fixe, c'est-à-dire qu'après la virgule, il y aura autant de chiffres que le
nombre sélectionné dans le menu mode.

Unité de mesure angulaire

C'est tout simplement pour choisir entre des calculs en radians ou en
degrés. C'est utile pour la trigonométrie.

Type de représentation graphique

Si vous êtes en mode normal, mais que le résultat fait plus de 10
chiffres ou que la valeur absolue est inférieure à
0.001, alors ce résultat sera affiché en notation scientifique.

https://www.sigmaths.net 19/109

Paramètre vous permettant de choisir le mode de représentation
graphique :

Func permet de faire des fonctions de type Y=f(X) ;

Par permet de faire des fonctions paramétriques, avec X et Y en
fonction de T ;

Pol permet de faire des fonctions polaires, où r est en fonction de heta ;

Seq permet de faire des suites numériques.

Relier éventuellement les points d'un graphe

Connected relie tous les points du graphique tandis que Dot les laisse
séparés s'ils sont trop éloignés.

Tracé simultané éventuel

En mode Sequential, la calculatrice va d'abord tracer la première courbe,
puis la suivante, et ainsi de suite.
En Simul, la calculatrice va tracer tous les points de même abscisse de
toutes les courbes, avant de passer au point d'abscisse suivant.

Réel, forme algébrique, forme exponentielle

Le mode réel ne permet pas d'afficher des nombres complexes, comme
les racines carrées de nombres négatifs, mais il affichera un résultat si l'on
met un nombre complexe (comme \iota en entrée).
Le mode complexe algébrique (a+b\iota) affichera les nombres complexes

https://www.sigmaths.net 20/109

sous la forme a + b imes\iota.
Le mode complexe exponentiel (re^ heta\iota) affichera les nombres
complexes sous la forme r imes e^{ heta imes\iota}.

Écran entier, deux modes d'écrans partagés

En mode Full, l'écran est normal : il n'est jamais coupé.
Le mode horizontal (Horiz) affiche le graphique dans la partie supérieure
de l'écran et l'écran principal ou un éditeur dans la partie inférieure.
Le mode table graphique (G-T) affiche le graphique dans la moitié gauche
de l'écran, et l'écran table dans la moitié droite.

Maintenant que vous savez bien à quoi ressemble votre calculatrice de
l'extérieur, on va s'intéresser un peu plus à l'intérieur. :ninja:

Tout un programme !

On a vu que votre calculatrice avait 4 façons de gérer votre écran :
l'écran principal, l'écran du graphique, l'écran du tableau de valeurs et
les menus d'options.

Mais en fait on vous a menti :-° , il existe un autre type d'écran, l'écran
de code. Mais il est un peu caché puisqu'il renferme le code des
programmes : ce n'est pas très intéressant de le lire pour l'utilisateur et
il ne faut pas effacer accidentellement une ligne. ;)

Créer un programme

Créer le programme

Bon c'est bien joli tout ça, mais si je veux programmer, je le mets
où mon code ?

https://www.sigmaths.net 21/109

Nous allons donc voir comment accéder à cet écran de programme.
Mais avant, pour écrire le code d'un programme, il nous faut... un
programme ! ^^

Voici donc comment créer un programme :
Depuis l'écran principal, faites

.

La calculatrice vous demande maintenant d'entrer le nom du programme. Il
peut contenir de 1 à 8 caractères, des lettres (plus heta) et des chiffres
(sauf pour le premier caractère). Nous verrons en détails dans le chapitre
suivant (http://sdz.tdct.org/sdz/tutoriel-3-64723-afficher-du-
texte.html#ss_part_1) comment écrire sur la calculatrice. Pour l'instant,
contentez-vous de taper sur les touches

,

,

puis

: le texte "TUTO" s'affiche à l'écran ; appuyez alors sur

pour continuer.

https://www.sigmaths.net 22/109

L'écran d'édition de programme

Vous devez alors obtenir ça sur l'écran :

La première ligne indique que l'on est sur l'écran-type d'édition de
programme et nous rappelle le nom du programme que l'on édite.
Les 7 lignes suivantes sont celles où vous pouvez entrer le code.
Si vous sautez plein de lignes (en appuyant sur

de façon répétée), vous observerez que la première ligne reste fixe, tandis
que les 7 autres peuvent défiler. On peut comparer ceci à une fenêtre sur
votre ordinateur : le titre de la fenêtre (là où il y a les boutons agrandir,
fermer...) reste fixe, mais vous pouvez faire défiler une page dans la
fenêtre. ;)

Quitter l'écran d'édition de programme

Pour quitter, il vous suffit juste d'appuyer sur l'opération auxiliaire QUIT
(quitter en français), qui se trouve sur le bouton

. Faites donc

, et vous voici revenu au menu principal. ;)

https://www.sigmaths.net 23/109

Accéder au code du programme

Le menu PRGM

Vous vous souvenez tout à l'heure, pour créer votre programme, vous
avez rapidement fait

.

Revenons là-dessus :
Tout d'abord, vous avez cliqué sur

, cela a donc ouvert le menu programme. Regardez la première ligne de
l'écran, on distingue 3 onglets :

EXEC, pour lancer un programme déjà créé ;

EDIT, pour éditer un programme déjà créé ;

NEW, pour créer un nouveau programme.

Si vous avez bien tout suivi, vous devriez avoir compris que quand vous
avez appuyé sur

, on est passé du premier onglet (EXEC) au dernier (NEW). Et quand vous
avez appuyé sur

Maintenant que je suis sur le menu principal, comment faire pour
retourner éditer mon programme ?

https://www.sigmaths.net 24/109

, vous avez sélectionné la première option de l'onglet NEW (en
l'occurrence, il n'y a qu'une seule option et elle permet de créer un
nouveau programme).

Si vous êtes perspicace, vous devriez avoir trouvé comment éditer le
programme déjà créé.

Éditer un programme

Il suffit tout simplement de lancer le menu PRGM (

), puis de sélectionner l'onglet EDIT (

), de choisir votre programme dans la liste avec les flèches

et

(normalement vous n'avez de créé que le programme TUTO), puis de
valider votre choix avec

.

Et vous revoilà devant l'écran d'édition de programme. :)

Exécuter un programme

Lancer un programme

Pour lancer un programme, rendez-vous sur l'écran principal, puis faites
https://www.sigmaths.net 25/109

. La liste des programmes que vous possédez apparaît alors. Sélectionnez
le vôtre avec

et

puis validez votre sélection avec

. Puis votre sélection apparaît sur le menu principal.

Vous obtenez donc "prgmPROGRAM" sur l'écran. Validez l'expression
avec

.

Programme en exécution

On reconnaît que la calculatrice est en train d'exécuter un programme
grâce à un petit sigle en haut à droite, comme ceci :

Astuce : Si vous avez beaucoup de programmes, vous pouvez aller
directement aux programmes qui commencent par une certaine lettre
en faisant
puis la touche qui contient la lettre en question.

https://www.sigmaths.net 26/109

Arrêter un programme

Le mieux pour arrêter un programme, c'est d'attendre qu'il s'arrête tout
seul. Mais si vous êtes pressé ou si votre programme ne s'arrête jamais,
vous pouvez l'arrêter en appuyant sur

.

Il s'affichera alors ceci :

C'est un menu qui permet soit de revenir là où le programme vous avait
laissé (sur l'écran principal, le graphique...), soit d'aller dans le code du
programme.

Gestion des programmes

Normalement, les programmes que vous avez créés jusqu'ici sont
vides ; vous n'avez donc pas le temps de voir ce sigle apparaître.

Il est possible de retrouver ce sigle dans d'autres cas (comme lorsque
la calculatrice trace un graphique), mais il est principalement présent
pour les programmes.

https://www.sigmaths.net 27/109

Supprimer un programme

Pour supprimer un programme de votre calculatrice, il va falloir se rendre
dans le menu de gestion de mémoire.
Pour y accéder depuis votre calculatrice, faites

.

Vous accédez au menu suivant :

Sélectionnez la deuxième option pour arriver à cet écran :

Sélectionnez ensuite la 7ème ligne : "7:Prgm...". Sélectionnez ensuite le
programme à supprimer puis appuyez sur

pour le supprimer. On vous demandera alors confirmation.

Selon votre modèle de calculatrice, vous pouvez directement tomber
sur le deuxième menu, sans passer par le premier.

https://www.sigmaths.net 28/109

L'archivage

Plutôt que de supprimer votre programme, vous pouvez l'archiver. Cela
veut dire que vous le transférez vers un autre type de mémoire qui est
beaucoup plus importante en taille. Vous ne pourrez donc plus utiliser
votre programme jusqu'à ce que vous le désarchiviez (ce qui est très
rapide je vous rassure ^^). Vous gagnez donc de la place sur votre
mémoire vive.

Pour archiver un programme, suivez la même procédure que pour en
supprimer un, sauf qu'il faut que vous appuyez sur

au lieu de

à la fin.

Si tout s'est bien passé, un * apparaît à gauche du nom du programme,
vous indiquant qu'il est archivé.

Renommer un programme

Il n'existe pas de fonction toute faite pour renommer un programme, il va
falloir utiliser une petite astuce.

Sur d'autres modèles de calculatrices, comme la TI-82 Stats.fr, il faut
appuyer sur
et non sur
pour supprimer un programme. Mais faites bien attention car on ne
vous demandera pas confirmation.

L'archivage n'est possible qu'à partir des TI-83.

https://www.sigmaths.net 29/109

Retournez dans le programme TUTO (recréez-le si vous l'avez supprimé)
et remplissez une ligne avec quelques chiffres, par exemple tapotez
"12304650" dans la première ligne.

Maintenant, si l'on veut que ce programme s'appelle autrement, on va
créer un nouveau programme et lui donner ce nouveau nom. On va
ensuite faire une sorte de copier/coller du programme que l'on veut
renommer.
Pour ce faire, utilisez depuis l'écran d'édition du nouveau programme la
fonction RCL (rappel en français) qui s'obtient en faisant

. Ensuite, faites

, et sélectionnez le programme à renommer dans la liste. Une fois votre
sélection validée, appuyez sur

pour valider le RCL.

Et là, sous vos yeux ébahis, le code de l'ancien programme (ici
"12304650") se colle dans le nouveau. Vous n'avez plus qu'à supprimer
l'ancien et votre programme est renommé. ;)

Si votre calculatrice est une TI-82 Stats.fr, le texte "RCL" sera
remplacé par le texte "Rappel". Le problème est que cela prend 3
caractères de plus. Donc si vous essayez de renommer un
programme dont le nom fait plus de 5 caractères, votre calculatrice
plantera une dizaine de secondes, vous devrez la redémarrer alors
que l'écran n'affichera rien du tout. :(Donc si vous avez une
calculatrice en français, vous ne pouvez pas renommer les

https://www.sigmaths.net 30/109

Vous savez maintenant parfaitement gérer les programmes.

Comment ça, ça ne vous suffit pas ? :euh:
Ah, vous voulez savoir quoi mettre dedans ! :D

Eh bien, passez au chapitre suivant. :pirate:

Afficher du texte

Nous allons commencer à programmer avec quelque chose de simple
: l'écriture et l'affichage de texte. Je ne parlerais pas de "gestion du
texte", on verra ça plus tard car c'est beaucoup plus complexe.
Bien que cela ne paraisse pas très important, cela reste un début et
puis, il faut bien commencer quelque part. :)
Allez, en avant chers Zéros, vos premières commandes de TI-Basic
vous attendent. :pirate:

Écrire sur sa calculatrice

Écrire du texte

programmes dont le titre fait plus de 5 caractères.
Ce bug a été résolu sur les autres calculatrices qui utilisent un TI-
basic francisé.

Notez qu'il existe encore une autre technique, beaucoup moins
pratique, mais qui marche à tous les coups, qui consiste à envoyer le
programme à un ami (via le câble calculatrice-calculatrice) ; puis cet
ami vous renvoie le programme. Puisque vous aurez déjà un
programme du même nom, la calculatrice vous proposera de le
renommer. ;)

https://www.sigmaths.net 31/109

Lorsque vous souhaitez écrire du texte sur votre calculatrice, il va falloir se
servir des jolies lettres au-dessus de la plupart des touches !
Seulement, si vous essayez en appuyant directement sur les touches, cela
n'affichera rien de spécial.
Il existe un bouton

, appuyez dessus, le curseur comporte alors un "A".
Vous allez maintenant pouvoir atteindre toutes les lettres du clavier ! En
fait, vous allez même atteindre toutes les commandes de la même couleur
que votre touche

dont les lettres.

Tout à fait ! La touche

, comme la touche

, ne s'active que pour la prochaine pression de touche. Autrement dit, vous
allez devoir appuyer sur "ALPHA" avant chaque nouvelle lettre... avec
cette méthode. En effet, si vous souhaitez écrire de nombreuses lettres,
cela sera vite long !
Il existe donc une solution pour remédier à cela : faites

+

C'est bizarre, je n'arrive à écrire qu'une seule lettre à la fois, c'est
normal ?

https://www.sigmaths.net 32/109

afin d'atteindre A-LOCK. Essayez alors d'écrire un mot ou deux et...
MAGIE ! :magicien: Il n'y a plus aucun souci !

Bravo, vous pouvez maintenant écrire sur votre calculatrice, mais ça ne
sert pas à grand-chose (à part donner un nom à un programme, vous
pourrez à la rigueur communiquer avec votre voisin, mais guère plus) ;
voyons désormais comment s'en servir en programmation.

Les fonctions

Tout langage de programmation dispose de fonctions qui permettent
diverses actions (afficher du texte, demander une valeur à l'utilisateur, ...).
Contrairement à d'autres langages, vous n'avez pas à taper les fonctions
puisqu'elles sont déjà toutes rangées dans les différents menus de la
calculatrice (

,

, ...).

Si vous souhaitez accéder une nouvelle fois aux touches par défaut, il
faudra appuyer de nouveau sur
.

Vous avez maintenant la réponse à la question que vous vous posiez
dans le chapitre précédent ; quand on vous demande le nom d'un
programme, le A-LOCK est activé : vous n'avez plus qu'à taper sur les
touches qui ont la lettre voulue au-dessus. Pour écrire des chiffres,
désactivez le A-LOCK, et pour réécrire des lettres, réactivez-le.

https://www.sigmaths.net 33/109

Deux fonctions qui se suivent sont séparés par le caractère ":". Lorsque
vous retournez à la ligne (par la touche

) dans l'écran d'édition de programme, les deux points sont
automatiquement ajoutés au début de la ligne (et vous ne pouvez pas les
enlever). Mais il est aussi possible d'entrer ces deux points manuellement
grâce à la combinaison

: Instruction1:Instruction2.

Afficher du texte avec Disp

Revenons donc à notre programme. Si vous ne l'avez pas déjà fait, créez
un nouveau programme puis éditez-le (vous serez automatiquement
redirigés vers l'écran de programmation si vous venez de créer le
programme). En cas d'oubli, allez relire le chapitre précédent. ;)

Vous allez apprendre la commande Disp. Pour cela, appuyer sur

puis sur

. Vous arrivez dans le sous-menu "I/O", cela signifie In/Out (Entrée/Sortie
en français pour les anglophobes). Vous trouverez donc ici toutes les
fonctions pour capter ou afficher des informations à l'écran. C'est parfait,
c'est exactement ce qu'on cherchait !
Intéressons-nous à la troisième commande : soit vous appuyez sur

, soit vous vous positionnez dessus avec les flèches puis appuyez sur
https://www.sigmaths.net 34/109

.

Disp s'ajoute alors à l'écran. Si vous tapez le code suivant :

:Disp BONJOUR

vous allez certainement obtenir un beau 0, vous comprendrez pourquoi
dans le prochain chapitre.

En fait, pour afficher bêtement votre texte, il faut ajouter des guillemets au
début et à la fin, comme ceci :

:Disp "BONJOUR"

Cette fois-ci, vous obtenez bien le résultat voulu :

Remplacez maintenant BONJOUR par ce que vous voulez (pas forcément
des lettres) mais en conservant les guillemets : votre programme affichera
exactement ce que vous avez écrit !

Ainsi, si vous voulez écrire un texte de plus de 16 caractères (en comptant
les espaces), vous allez devoir le couper.

Si vous dépassez la largeur de l'écran avec votre texte, la fin ne sera
pas affichée ! Vous devez respecter les dimensions 8 x 16 de votre
écran.

Mais, ça veut dire que je dois remettre Disp à chaque fois ? C'est long
!

https://www.sigmaths.net 35/109

Eh bien, non ! La commande Disp est très pratique pour cela : si vous
mettez

après votre texte, ce que vous réécrirez sera considéré comme dans un
nouveau Disp. Je vous montre :

:Disp "BONJOUR LES"

:Disp "ZEROS"

équivaut à ça :

:Disp "BONJOUR LES","ZEROS"

Afficher du texte avec Output

Il faut utiliser une autre fonction : Output(. Pour l'atteindre, on retourne
dans le menu de tout à l'heure avec

puis

et il s'agit de la 6e commande.

Output(a l'énorme avantage de choisir où afficher votre texte ; il s'utilise
ainsi : Output(ligne,colonne,valeur). Tout comme Disp, la valeur peut
être une chaîne de caractères ou d'autres choses que l'on verra dans le

Disp s'utilise ainsi : Disp [valeurA,valeurB,valeurC,...,valeur n]. Une
valeur peut être une chaîne de caractères, comme ici, ou d'autres
choses que l'on verra dans le chapitre suivant.

Disp c'est bien joli, mais comment je fais pour mettre mon texte où je
veux ?

https://www.sigmaths.net 36/109

chapitre suivant.
Encore une fois vous devez faire attention à la taille de votre écran ! Un
petit exemple :

:Output(4,5,"BONJOUR")

va à peu près centrer votre BONJOUR :

En revanche, il vous faudra retaper la fonction si vous désirez ajouter une
ligne, contrairement à Disp. Cependant, les guillemets sont obligatoires
sinon la calculatrice comprendra qu'il s'agit d'un calcul.

Lorsque vous affichez quelque chose à l'écran sans en choisir
l'emplacement (pour le moment, vous ne connaissez que Disp), une sorte
de curseur se met en place, revenant à la ligne à chaque fois. Cela permet
ainsi à deux Disp de ne pas s'écraser ! Cependant, ce n'est pas le cas
pour Output(: le curseur ne bouge pas ; voici un code qui va être
problématique :

Attention aux conflits d'écrasement entre deux Output(ou entre un
Output(et un Disp. En effet, si deux textes doivent se chevaucher, la
dernière instruction dans votre programme l'emportera et écrasera ce
dont elle a besoin pour s'afficher totalement.

https://www.sigmaths.net 37/109

:Output(2,1,"BONJOUR")

:Disp "HELLO"

Si vous essayez, vous aurez quelque chose de très moche : le Disp
ignorera que l'Output(a déjà affiché quelque chose et il écrira par-dessus,
supprimant ainsi "BONJO", on aura donc "HELLOUR" ! Faites donc bien
attention.

Effacer l'écran

Lorsque l'on programme, quel que soit le langage, un peu de propreté est
toujours bienvenu !
Il est donc important d'apprendre à effacer l'écran, pour qu'on s'y retrouve
un peu, surtout avec la petite taille de celui de la calculatrice.

Pour cela, il suffit d'utiliser une commande déjà existante : c'est donc très
facile. Il s'agit de la fonction "ClrHome" que vous pourrez trouver dans le
menu I/O (

+

si vous avez oublié), il s'agit de la 8e ligne.

Il n'y a rien de plus à dire sur cette fonction, car elle ne prend aucun
argument, elle se contente d'effacer votre écran, et c'est déjà bien. :D

Mini-TP : "Hello World"

Bien qu'il s'agisse de la base du TI-Basic, un petit TP ne fait pas de mal !

Je vous conseille de mettre cette fonction au début de la plupart de
vos programmes (sauf exceptions), car c'est beaucoup plus agréable
et facile à gérer ensuite.

https://www.sigmaths.net 38/109

Cahier des charges

Ce programme sera un bête "Hello World". Il devra ainsi afficher le texte
"Hello World".
Il devra répondre aux attentes suivantes :

l'écran doit être effacé au début du programme ;

le texte "Hello World" doit être le plus centré possible sur l'écran ;

comme on est Français, vous écrirez "BONJOUR" sur la deuxième ligne
de l'écran, sans Output((ça ne sera pas très propre, mais c'est pour
vous faire réfléchir un peu).

Bon allez ! C'est à vous de travailler, à vos calculatrices !

Correction

C'est le premier mini-TP, il est donc très facile, tout le monde doit avoir
réussi. Si ce n'est pas le cas, ne vous inquiétez pas, relisez ce chapitre et
le précédent.

Et... voici le code :

:ClrHome

:Disp "","BONJOUR"

:Output(5,4,"HELLO WORLD")

Et voici la source si ça peut vous aider :

https://www.sigmaths.net 39/109

Télécharger le fichier .8xp à transférer sur votre calculatrice
(114 octets) (46 octets sur la calculatrice)
(http://sdz.serveftp.net/dl/shaac/TI/HELLO.8xp)

Vous remarquerez la ligne vide qui permet en quelque sorte de "sauter une
ligne" avec un Disp.
Vous pouviez bien sûr inverser l'ordre du Disp et de l'Output(ou choisir de
centrer différemment ce dernier.

Normalement, je ne devrais pas avoir perdu trop de monde en route. Et
puis, un peu de courage ! Car le prochain chapitre est déjà moins
digeste... On va attaquer les variables !
Pas de panique, la gestion des variables en TI-Basic n'est vraiment pas
compliquée. :)

Gérer les variables

Ce que nous avons vu pour le moment est vraiment très simple.
Normalement, cela devrait très vite devenir intuitif pour vous (si cela ne
l'est pas déjà). On va donc pouvoir s'attaquer à des choses plus
intéressantes et permettant plus de possibilités (en effet, on ne va pas
très loin en n'affichant que du texte :D).
Bien sûr, ne paniquez pas. Les variables ne constituent pas un
élément très complexe, mais plutôt un concept à comprendre.

Vous avez dit variable ?

S'il y a bien une chose à laquelle on ne peut pas échapper, c'est les
variables (mais il n'y a pas que ça d'important non plus :-°). Vous allez très
vite vous rendre compte qu'il n'est pas possible de ne pas les utiliser dès
qu'on crée un programme un minimum compliqué.

Certains d'entre vous, s'ils connaissent d'autres langages de
programmation, connaissent sûrement les variables. Pour les autres, il
s'agit d'un endroit où l'on peut stocker un nombre tout en lui donnant un
petit nom pour le retrouver plus rapidement.

https://www.sigmaths.net 40/109

Pas de problème. ^^ On va en choisir un plus concret.
Disons que j'ai besoin pour un programme du nombre 45,509. Or, étant
flemmard, je décide de le mettre dans une variable pour éviter d'avoir à le
retaper. Je vais donc le stocker dans la variable A, et dès lors, A
représentera 45,509 jusqu'à ce que je mette une autre valeur dans ma
variable A.

Cela peut sembler peu utile, mais c'est tout l'inverse ! Vous allez voir que
si vous voulez demander une valeur à l'utilisateur, il faudra passer par une
variable pour récupérer la saisie.

Utiliser les variables

Stocker un nombre dans une variable

Les variables, c'est bien beau, mais si elles sont vides elles ne servent à
rien !
Nous allons en exemple stocker le nombre 47 dans la variable A. Pour
cela, on tape 47 que l'on STOcke dans "A". Si vous n'avez pas compris
mon indice, il faut utiliser la touche

. Cette touche signifie "Stocker dans". Cela donnera ça :

:47->A

Utiliser les variables dans les expressions

Je ne suis pas sûr de bien comprendre, tu aurais un autre exemple ?

Vous voyez ici la flèche -> contituée de deux caractère, mais en
réalité il s'agit d'un seul et même caractère, c'est juste que l'on ne
peut pas afficher de flèche sur l'ordinateur. :euh:

https://www.sigmaths.net 41/109

Il est désormais temps de vous prouver combien les variables sont utiles.
Vous allez tout d'abord pouvoir utiliser une variable dans un calcul :

:12->A

:36->B

:AB+(B/A)->C

Ainsi, si je veux modifier mes valeurs, je n'ai pas à modifier tout le calcul,
juste les variables. Ici, C vaudra 12 imes36+\frac{36}{12}), soit 435.
Vous pouvez également remarquer que vous pouvez stocker des variables
DANS des variables (avec un changement, sinon c'est inutile). Il est ainsi
possible d'incrémenter une variable (cela signifie lui ajouter un) comme
ceci :

:A+1->A

Afficher une variable

Pour afficher une variable, il suffit de retirer les guillemets d'une fonction
d'affichage comme Disp ou Output(.
Reprenons le code précédent :

:12->A

:36->B

:Disp AB+(B/A)

Cela m'affichera à l'écran 435. De plus, cela permet d'éviter d'utiliser une
variable en plus (C). Vous devriez maintenant comprendre pourquoi le
code :

:Disp BONJOUR

affiche souvent 0. En effet, la calculatrice va multiplier la variable B, par O
puis par N, ... jusqu'au R. Et comme la plupart des variables valent le plus
souvent 0, le résultat sera 0.

https://www.sigmaths.net 42/109

Et cela fonctionne exactement pareil avec Output(:

:3->B

:8->A

:Output(5,8,AB)

Vous obtiendrez alors un beau 24 vers le milieu de l'écran.

Interagir avec l'utilisateur

Maintenant que l'on sait se servir des variables, il est très intéressant de
parvenir à les modifier. On peut ainsi accéder à tout leur potentiel. Pour
cela nous allons interagir avec l'utilisateur.

L'utilisateur, c'est la personne qui utilisera le programme. Cela peut être
vous, un de vos amis, un étranger, un collègue, votre poisson rouge, etc.
Il existe donc deux fonctions en TI-Basic qui permettent de demander à
l'utilisateur d'entrer des nombres qui seront stockés dans des variables.

La fonction Prompt

Prompt, c'est la plus facile à utiliser, son problème est qu'elle n'est pas
personnalisable : le texte écrit pour indiquer ce que l'utilisateur doit entrer
est forcément de type variablevariable=?. Pour trouver la fonction,
direction le menu I/O. C'est la 2e fonction.
Elle s'utilise comme ceci :

:Prompt A

C'est qui l'utilisateur ?

https://www.sigmaths.net 43/109

La variable aura désormais la valeur que l'utilisateur a entré.

À l'instar de Disp, Prompt peut prendre plusieurs variables à la fois, en
utilisant la fonction comme ceci : Prompt
variableA[,variableB,...,variable n], par exemple :

:Prompt A,B

Il vous sera alors demandé d'entrer A puis B.

Input, pour la personnalisation

La différence d'Input (toujours dans le menu I/O mais la 1e fonction) c'est
qu'elle prend un argument de plus : le message à afficher.
La syntaxe est la suivante : Input ["texte",variable]
Comme vous pouvez le voir, le groupe texte + variable est facultatif, cela
veut dire que l'on peut utiliser Input sans aucun argument. Mais c'est pour

Toute valeur précédente de la variable A sera écrasée !

Ici on demande une valeur pour la variable A, vous pouvez entrer un
nombre ou une variable. La variable A prendra alors la valeur de cette
autre variable.

https://www.sigmaths.net 44/109

une tout autre utilisation que l'on verra plus tard. On peut aussi noter que
le "texte" peut être remplacé par une variable contenant du texte, un type
de variable que nous verrons plus tard également.

Voici un exemple d'utilisation avec les variables :

:Input "RAYON ?",R

Au lieu de simplement afficher le nom de la variable, votre message sera
affiché. Du coup, vous ne savez pas le nom de la variable dans laquelle le
nombre est stocké. De plus, il est obligatoire de refaire un Input pour
chaque variable.

Mini-TP : Calculer le volume d'un cylindre

Il n'y a rien de mieux qu'un mini-TP pour être sûr d'avoir bien compris.
Vous allez maintenant créer votre premier programme intéressant : il s'agit
un programme de calcul du volume d'un cylindre.

Cahier des charges

Avant tout, je vous rappelle la formule du volume d'un cylindre pour ceux
qui auraient oublié : \pi imes R^2 imes H
Le programme va devoir demander R et H (le rayon et la hauteur) puis
afficher le volume.

Vous avez vu qu'ici, on a stocké le rayon dans la variable R, comme
Rayon. C'est une habitude à prendre : prenez comme variable une
lettre qui se rapporte à ce qu'on met dedans.

https://www.sigmaths.net 45/109

Je vous conseille de stocker le résultat du calcul dans une variable (V par
exemple) puis de l'afficher, pour plus de clarté, mais ce n'est pas
obligatoire.
Enfin, je rappelle que pour \pi c'est la combinaison

.
À vos calculettes !

Correction

Voilà le code que j'ai obtenu. Si vous n'avez pas du tout compris, relisez le
chapitre. Il existe également plusieurs variantes dans le code.

:Input "RAYON:",R

:Input "HAUTEUR:",H

:[PI]R²H->V

:Disp "LE VOLUME:",V

Remplacez bien sûr [PI] par \pi.

Télécharger le fichier .8xp à transférer sur votre calculatrice
(129 octets) (62 octets sur la calculatrice)
(http://sdz.serveftp.net/dl/shaac/TI/CYLINDRE.8xp)

Ce qui m'affichera :

Vous n'étiez pas obligé d'utiliser de Input, mais c'est plus joli.
Le code le plus léger (mais pas très attractif) aurait été :

https://www.sigmaths.net 46/109

:Prompt R,H

:Disp [PI]R²H

Le résultat, au niveau du calcul, sera le même mais ça sera moins beau.
Vous pouviez rajouter une phrase expliquant la fonction du programme
avec un Disp ou un Output(.

Vous pouvez maintenant faire des programmes un peu plus évolués et
intéressants. Seulement, à part la possibilité de faire des calculs, les
variables ne vous apportent pas encore beaucoup.
Le prochain chapitre abordera les conditions. Alliées avec les variables et
les boucles (que l'on verra plus tard), elles prendront tout leur intérêt.
Pas de repos moussaillon. :pirate:

Les conditions

Le problème lorsque l'on laisse l'utilisateur entrer des données comme
on l'a vu dans le chapitre précedent, c'est qu'ils peuvent mettre
n'importe quoi. :colere2:
Nous allons ici voir comment on peut contrôler les saisies de
l'utilisateur, et comment adapter le programme à ces saisies.

Le principe

Rien qu'à la lecture, vous devriez avoir compris de quoi nous allons parler.
C'est en effet un nom très transparent et un concept facilement
compréhensible puisqu'il a une récurrence avec le monde réel.
Une condition va donc effectuer une action à condition que quelque
chose (que l'on aura définie) soit vrai.
Pour faire une condition, nous allons devoir nous servir d'opérateurs
logiques. Ceux-ci vont nous permettre d'articuler la condition, ils sont le
lien entre les différents compartiments.
Prenons un exemple, imaginons que je veuille manger une pomme, nous
allons décomposer l'action :

https://www.sigmaths.net 47/109

Je regarde combien j'ai de pommes,

SI j'ai une pomme ou plus,

ALORS je prends une pomme, et je la mange,

SINON je prends une banane (on va dire qu'il y en a :p).

Ceci nous permet d'effuctuer des opérations en fonctions de facteurs
externes, ce qui est très pratique.

Les tests

Eh bien on va utiliser ce que l'on appelle des test.
Un test est en quelque sorte une question que l'on va poser à la
calculatrice. De son côté, la calculatrice va analyser la question en faisant
des calculs puis va nous répondre en nous renvoyant un résultat.

Formuler des tests

Pour formuler un test, on va utiliser le menu éponyme qui s'obtient en
faisant

. Ce menu contient deux onglets, l'onglet TEST, qui contient tout ce que
l'on veut pour faire des tests de comparaison, et l'onglet LOGIC, qui
contient les opérateurs logiques.

Les tests de comparaison

Mais comment je fais pour expliquer à ma calculatrice que je veux
savoir si telle variable vaut tant ?

https://www.sigmaths.net 48/109

Le nom parle de lui-même, ce sont les tests qui comparent deux variables
ou valeurs.
On utilise ces opérateurs entre deux variables pour les comparer. Une
valeur est alors renvoyée : 1 si la comparaison écrite est vraie, 0 si elle est
fausse.

Opérateur
Renvoie 1 lorsque la variable à gauche
est ... celle de droite

Notation
dans le tuto

= égale à =

eq différente de !=

> supérieure à >

\geq supérieure ou égale à >=

< inférieure à <

\leq inférieure ou égale à <=

Les opérateurs logiques

Cependant, on a généralement besoin de plus d'une condition, on peut
alors utiliser les opérateurs logiques qui, combinés aux tests de
comparaison, permettent de former des conditions plus complexes.

Tout comme les tests de comparaison, ils sont utilisés (sauf pour un cas
particulier) avec un membre à gauche et un à droite.

https://www.sigmaths.net 49/109

Opérateurs À gauche À droite Renvoie

and 1 1 1

1 0 0

0 0 0

-

or 1 1 1

1 0 1

0 0 0

-

xor 1 1 0

1 0 1

0 0 0

-

not(1 0

0 1

Dans ce tableau, j'ai mis 1 lorsque le membre de gauche ou celui de droite
valait quelque chose d'autre que 0. Notez bien que ça pourrait tout aussi
bien être un tout autre chiffre non nul. En revanche pour la dernière
colonne, il s'agit bien uniquement de 1 ou 0.

Si vous n'avez pas bien compris ce tableau, nous allons reprendre
différemment : https://www.sigmaths.net 50/109

and est l'opérateur logique "et" ; il renvoie 1 si tous les tests sont vrais ;

or est l'opérateur logique "ou" ; il renvoie 1 si au moins un des tests est
vrai ;

xor est l'opérateur logique "ou exclusif" ; il renvoie 1 si un des tests est
vrai et l'autre faux ;

not(est l'opérateur "non" ; il renvoie la valeur inverse de son argument
(0 pour 1, et 1 pour 0).

Combinaison

Les opérateurs logiques ne s'utilisent pas seuls, il faut s'en servir avec des
tests. Pour cela, il suffit de suivre le schéma de l'exemple suivant.

: A<3 or A>20

Qui renverra 1 si A est dans l'intervalle]-\infty ; 3[\cup]20 ; +\infty[.

La condition "Si"

Commençons avec la condition If, pour la retrouver il vous suffit de taper

depuis un menu d'édition de programme. En effet, la commande est la
première du premier menu CTL (pour Contrôle).
Cette commande a deux syntaxes possibles, que l'on veuille faire une
condition simple ou un peu plus complexe.

If, pour les petits tests

Pour la première syntaxe, c'est très facile :
https://www.sigmaths.net 51/109

:If A=3

:Disp "A VAUT 3"

:Disp "CETTE LIGNE SERA AFFICHE DANS TOUT LES CAS"

Un test se fera sur une variable, une chaine, une liste ou une matrice
(nous n'avons vu que le premier, le reste viendra plus tard ;)).
Après le If, mettez un test logique (tel que nous venons de le voir).
L'instruction suivant le If ne sera lue que si la condition est vraie.

:If condition
:commande (si vrai)
:commande

Si vous souhaitez donc exécuter plusieurs instructions, vous allez devoir
utiliser l'autre syntaxe.

If:Then:Else:End, pour plus de liberté

En plus de permettre l'exécution de plusieurs instructions, cette syntaxe,
qui utilise d'autre opérateurs, permet également d'exécuter des
instructions si le test est faux. C'est très pratique pour éviter de faire une
deuxième condition avec le test inverse.
Tout les nouveaux opérateurs se trouvent dans le menu CTL (

) :

If s'obtient en faisant

;

Then s'obtient en faisant

Seule la première instruction suivant le If sera ignorée si le test est
faux. Les suivantes seront lues dans tout les cas.

https://www.sigmaths.net 52/109

;

Else s'obtient en faisant

;

End s'obtient en faisant

.

La syntaxe est alors la suivante :
:If condition
:Then
:commande (si vrai)
:commande (si vrai)
:Else
:commande (si faux)
:commande (si faux)
:End
:commande

Le plus souvent, on utilisera en effet un code sans Else.
Il n'y a pas grand chose de plus à expliquer, pour les tests, vous avez le
droit à la même chose. De même pour les instructions.

:If condition
:Then
:commande (si vrai)
:commande (si vrai)
:End
:commande

La balise Else est entièrement facultative.

https://www.sigmaths.net 53/109

D'autres conditions

La plupart du temps vous utiliserez les conditions telles qu'on vient de le
voir. Mais il existent d'autres applications des conditions.

Mettre des test dans les calculs

Généralement on utilise les test logiques avec des fonctions prévues à cet
effet, comme If ou d'autres que l'on verra au chapitre suivant. Mais parfois
il est plus astucieux d'imbriquer directement ces conditions dans des
calculs.

Comme c'est un peu abstrait, voici un exemple : imaginons que vous êtes
en train de coder un jeu à deux joueurs, qui jouent à tour de rôle. Vous
stockez par exemple le numéro du joueur dont c'est le tour dans la variable
J. Comment feriez-vous pour changer cette variable de valeur, c'est à dire
pour que dès qu'un joueur ait fini son tour, J prenne la valeur du numéro
de l'autre joueur.
Avec les connaissances que vous possédez, vous seriez à coup sûr tentés
de faire comme ce qui suit.

:If J=1:2->J

:If J=2:1->J

Ou tout autre raisonnement du même type par exemple avec Then.

N'oubliez surtout pas le End sinon cela n'aura très certainement pas le
résultat attendu. Notez cependant que si vous souhaitez finir un
programme par une condition, le End n'est pas nécessaire (mais il est
beaucoup plus propre, d'autant plus que si vous modifiez plus tard
votre programme vous risquez de l'oublier).

https://www.sigmaths.net 54/109

Mais il y a plus simple !
Je vais vous mettre sur la piste : rappelez-vous qu'un test logique renvoie
1 s'il est vrai et 0 s'il est faux.
C'est bon, vous avez trouvé ? :D

1+(J=1)->J

Effectivement :

Si J vaut 1, notre test sera vrai et J se verra donc assigner la valeur
1+1, c'est à dire 2 (on est bien passé de J=1 à J=2).

Si J vaut 2, notre test sera faux et J se verra donc assigner la valeur
1+0, c'est à dire 1 (on est bien passé de J=2 à J=1).

Le code est ainsi plus court, prend moins de place en mémoire, et prend
moins de temps à s'exécuter. :)

Des conditions raccourcies

Quand vous faites des conditions, la fonction If va se charger de vérifier
que votre test vaut quelque chose. Ce quelque chose est renvoyé par
l'opérateur du test, et il s'agit toujours de 0 et 1.

Cela signifie que vous pouvez vous passer d'un opérateur de test pour
certaines occasions. En effet, un test est considéré comme vrai s'il vaut
quelque chose, et comme faux s'il vaut 0.
Ainsi, pour n'effectuer une commande que si la variable A est différente de
0, il suffit d'écrire :

:If A

:Disp "A NE VAUT PAS 0"

Deux conditions bien particulières

https://www.sigmaths.net 55/109

Voilà on a quasiment fait le tour des conditions. Mais il reste encore deux
fonctions assez particulières à vous présenter. À priori vous ne vous en
servirez jamais, mais si un jour vous tombez sur une situation adaptée à
ces fonctions vous serez bien heureux de les connaître. :D
Si jamais vous êtes assez pressés, vous pouvez passer directement au
mini-TP ci-dessous, vous n'aurez pas de problème à ne pas connaitre ces
deux fonctions.
Bon trève de bavardage, voici les-dites fonctions.

La première, IS>(

Rassurez-vous, sous se nom d'apparence barbare se cachent des initiales
bien compréhensibles. ^^ IS>(signifie Increment and Skip (soit
Incrémenter et Omettre en français).
En gros cela veut dire que l'on va incrémenter une variable (c'est à dire
que l'on va augmenter sa valeur de 1), puis omettre ou non l'action
suivante, sous une certaine condition. Cette condition étant décrite dans le
tire : on omet l'instruction suivante si la variable incrémentée est plus
grande qu'un certain chiffre que l'on donnera.

Pour clarifier un peu plus les choses, voici la syntaxe de IS>(:
:IS>(variable,valeur)
:commande (si résultat <= valeur)
:commande

Ça doit toujours être un peu flou, donc je vais vous montrer comment on
pourrait écrire IS>(autrement.
Écrire par exemple :

La fonction se nomme IS>(>_ Et pourquoi pas JK>@]] tant qu'on y
est ?)

https://www.sigmaths.net 56/109

:IS>(A,5)

:Disp "COMMANDE SOUS CONDITION"

:Disp "COMMANDE TOUJOURS EXECUTEE"

Reviens à écrire :

:A+1->A

:If A<=5

:Disp "COMMANDE SOUS CONDITION"

:Disp "COMMANDE TOUJOURS EXECUTEE"

IS>(est plus rapide non ? ^^ Mais concrètement à quoi ça sert ?
Honnêtement on ne l'utilise quasiment jamais mais je vous ai trouvé un
exemple où son utilisation est judicieuse :
Imaginons que vous fassiez un jeu de combat : vous devez par exemple
tuer un gros méchant, avec X points de vies (avec 0 points de vie il tient
toujours debout, il est un peu sonné mais on ne le compte pas comme
mort). Le nombre de dégâts que vous lui avez déjà infligé serait stocké
dans D. À chaque fois que vous le frapperez, on aura :

:IS>(D,X)

:Disp "TAPE PLUS FORT"

:Disp "LA SUITE DU JEU..."

Voilà c'est fini (enfin ! :D) pour cette fonction, si vous n'avez pas compris
n'hésitez pas à relire, sinon laissez tomber, ce n'est vraiment pas
important.

La deuxième, DS<(

Bon je vais aller très vite, cette fonction est tout simplement le contraire de
celle que l'on vient de voir : elle s'appelle Decrement and Skip
(Décrémenter et Omettre), et a pour fontion de soustraire 1 à la variable et
d'omettre l'instruction suivante si elle est plus petite que la valeur indiquée.

https://www.sigmaths.net 57/109

:DS<(variable,valeur)
:commande (si réponse >= valeur)
:commande

Mini-TP : Loi de Descartes

Énoncé

On va dans ce mini-TP faire un programme qui vous sera bien utile si
jamais vous êtes en classe de Seconde. Il s'agit de l'application de la loi de
Descartes sur les indices de réfraction. Vous savez ce truc qui explique
que lorsque l'on plonge un bâton à moitié dans de l'eau, on a l'impression
qu'il est tordu.

Si vous n'avez pas encore vu cette formule, la voici : {n}_{1}
imes\sin({I}_{1}) = {n}_{2} imes\sin({I}_{2}).

Où n1 et n2 sont les indices des milieux, et I1 et I2 les angles des rayons
incidents et réfractés.

Si vous ne comprenez rien à ce que signifie cette relation, aucune
importance. ^^ Il vous suffit juste de l'appliquer en sachant qu'une
application de cette loi consiste à avoir 3 de ces valeurs données et une
inconnue. Le programme doit renvoyer la valeur de l'inconnue.

Vous devez donc demander les 4 valeurs, et demander que l'utilisateur
entre 0 pour l'inconnue. Ensuite avec les conditions, vous allez calculer la
valeur de renvoi suivant l'inconnue (c'est juste une petite équation à
résoudre).

Correction

Ce n'était pas très compliqué, voici toutefois la solution.

https://www.sigmaths.net 58/109

:Disp "0 : INCONNUE"

:Input "N1:",N

:Input "I1:",I

:Input "N2:",O

:Input "I2:",J

:If N=0

:Osin(J)/sin(I)->X

:If I=0

:Arcsin(Osin(J)/N)->X

:If O=0

:Nsin(I)/sin(J)->X

:If J=0

:Arcsin(Nsin(I)/O)->X

:Disp "INCONNUE:",X

Télécharger le fichier .8xp à transférer sur votre calculatrice
(175 octets) (144 octets sur la calculatrice)
(http://sdz.serveftp.net/dl/shaac/TI/DESCARTE.8xp)

Les conditions sont essentielles dans un langage de programmation, si
vous n'avez pas compris comment utiliser If, il faut absolument que vous
relisiez ce chapitre.

Sinon, vous pouvez passeer au chapitre suivant. ^^

Les boucles

Une tâche répétitive, rien de mieux pour ennuyer un être humain.
Heureusement, les machines n'ont pas ce problème, on va donc
pouvoir tranquillement leur confier des morceaux de codes à répéter,
en boucle. Et c'est justement ces boucles, très utiles, que vous allez
apprendre dans ce chapitre.
Ainsi, sachez que pour faire un jeu de type "Snake", la grande majorité
de votre code se trouvera dans une boucle.

Le principe https://www.sigmaths.net 59/109

Encore une fois, le nom est assez explicite. En effet, ces différentes
fonctions vont vous permettre de faire exécuter plusieurs fois le même
code à votre calculatrice. De plus, bien que le code reste le même, si une
variable change de valeur lors d'un tour de boucle, elle aura cette
nouvelle valeur au tour suivant.
Le schéma d'une boucle est toujours le même, et il est très simple :

:Début de boucle avec une condition
:Code à exécuter
:Code à exécuter
:Code à exécuter
:Code à exécuter
:Fin de la boucle

Les mots en gras sont les plus importants :

pour le début, ça me semble évident, ;)

pour la fin, si vous ne la marquez pas, la calculatrice ne parcourera
qu'une seule fois votre code, ce qui est plutôt génant pour une boucle,

enfin, la condition permet d'éviter les boucles infinies. Le code ne sera
exécuté qu'en fonction de la condition.

Les boucles simples

Dans cette sous-partie, nous allons étudier deux des trois boucles qui
existent en TI-Basic. Elles ne différent que pour un point ; vous pourrez
donc souvent utiliser l'une ou l'autre sans que cela n'ait d'effet sur votre
programme.

La boucle While

La boucle While est certainement la plus simple à comprendre, While étant
un mot anglais que l'on peut traduire traduire par "tant que".
En effet, avec While votre boucle sera exécuté tant que la condition est

https://www.sigmaths.net 60/109

vraie. Attention, si dès le début la condition est fausse, la boucle sera tout
simplement ignorée. ;)

Voici donc la syntaxe de While :
:While condition
:commande (tant que condition est vraie)
:commande (tant que condition est vraie)
:End
:commande
Les deux premières commandes étant exécutées tant que la condition est
vraie. La troisième étant exécutée une fois que la condition n'est plus
vraie.

Voici un exemple avec un programme qui va forcer l'utilisateur a rentrer
une valeur dans la variable A.

:0->A

:While A=0

:Prompt A

:End

Normalement vous devriez vous souvenir d'où se trouve End dans les
menus (si ce n'est pas le cas, je vous renvoie au chapitre précédent). La
fonction While est quand à elle la 5e du menu CTL.
Intéressons-nous de plus près à ce qu'il s'est passé :

la calculatrice regarde si A vaut bien 0, c'est le cas donc elle continue,

elle exécute alors le Prompt et demande donc à l'utilisateur d'entrer une
valeur,

elle arrive à la balise End et comprends que ce qui suit ne fait plus
partie de son bloc d'instruction,

elle revient alors au début et vérifie si A vaut toujours 0,

si c'est faux, alors elle quitte la boucle et continue le programe, sinon
elle exécute de nouveau le Prompt,

... https://www.sigmaths.net 61/109

La boucle Repeat

La fonction Repeat est presque comme While, la syntaxe est donc la
même, et c'est la 6e fonction du menu CTL.
Il existe deux différences, qui sont toutes deux liées à la condition : Repeat
exécute la boucle jusqu'à ce que la condition soit vraie (la conditions est
testée à la fin de la boucle).
:Repeat condition
:commande (jusqu?à ce que condition soit vraie)
:commande (jusqu?à ce que condition soit vraie)
:End
:commande
Ce qui a pour principales conséquences par rapport à While, que Repeat
exécutera au moins une fois le code qu'elle contient, et ce même si la
condition est fausse !

Je suppose que vous n'y voyiez pas grand intérêt, mais voilà un exemple
d'utilisation :

:Repeat A

:Input "QUEL EST TON AGE ?",A

:End

:Disp "TON AGE EST DONC",A

La condition de la première ligne est une simplification de la condition
" A!=0 ", si vous avez du mal revoyez le chapitre précédant.
Ici, nous n'avons pas besoin de nous embêter à stocker 0 dans A, puisque

Faites attention si vous utilisez une boucle infinie (While 1 par
exemple), qui ne s'arrêtera jamais d'elle-même et nous obligera à
quitter "à la bourrin" le programme (comprendre "en utilisant
").

https://www.sigmaths.net 62/109

même si A est différent de 0, la boucle sera exécutée (bien que l'utilisation
d'une boucle ne soit pas obligatoire ici :-°).

La boucle par incrémentation

Voici donc la dernière boucle du TI-Basic, il s'agit de ... For !

Il s'agit d'une boucle un peu différente puisqu'elle ne prend pas de
condition comme While ou Repeat ; elle s'auto-incrémente.

Sa syntaxe semble plus complexe à première vue :

:For(variable,départ,arrivée[,incrément])
:commande (tant que arrivée n?est pas dépassée)
:commande (tant que arrivée n?est pas dépassée)
:End
:commande

Pour utiliser correctement For(, il va donc falloir lui donner 3 ou 4
indications.

Tout d'abord, la variable, c'est sur elle que l'incrémentation va agir, on
utilise en général F (pour For) mais ce n'est pas une obligation ;

ensuite le début, c'est à dire la valeur qui va être stockée en premier
lieu dans la variable ;

puis l'arrivée, c'est donc une valeur qui indique à la boucle de s'arrêter
si la variable lui est supérieur,

enfin, l'incrément, ou pas, qui est facultatif car il vaut "1" par défaut,
mais sa valeur est à votre convenance. ;) Notez que cet incrément peut
être négatif.

Si vous n'avez pas bien compris, il faut essayer de traduire For(par Pour.
On aurait donc, avec comme code :

:For(F,1,9,2)

https://www.sigmaths.net 63/109

Pour F allant de 1 à 9 avec un pas de 2 (c'est à dire allant de 2 en 2),
j'exécute le code ...

Mini-TP : Probabilité d'anniversaires identiques

Ce mini-TP se base sur le paradoxe des anniversaires
(http://fr.wikipedia.org/wiki/Paradoxe_des_anniversaires) (appelé paradoxe
bien que ce n'en soit pas réellement un).
Il s'agit de déterminer le pourcentage de chances de parmi N personnes,
deux soient nées le même jour du même mois (peu importe l'année).

Cahier des charges

Pour commencer, je vais donner la formule à utiliser pour calculer la
probabilité : \prod_{i=0}^{n-1} \frac{365-i}{365}, autrement dit : (\frac{365-0}
{365}) (\frac{365-1}{365}) \ldots (\frac{365-(n-1)}{365}).
Cependant, nous n'avons là que la probabilité que deux anniversaires ne
tombe pas en même temps. Nous, nous voulons savoir l'inverse
(l'événement complémentaire, si cela vous dit quelque chose). Nous allons
devoir faire (1-B) imes100, où B est notre produit de tout à l'heure, pour
avoir un joli pourcentage.

Vous allez devoir faire un arrondi de ce résultat (disons, à deux virgules).
Pour cela, utilisez la fonction round ((

) qui s'utilise ainsi : round(valeur [,décimal]).

Tout comme While et Repeat, For(demande une fin de bloc avec End.
Ne l'oubliez pas !

https://www.sigmaths.net 64/109

Avant d'utiliser la formule, regardez s le nombre entré est inférieur à 0,
dans ce cas arrêtez le programme ; et s'il est supérieur ou égal à 82,
affichez 100 puis arrêtez le programme (la calculatrice arrondira à 100%
dès 82 personnes, bien que la vraie valeur de 100% soit à 366
personnes).
Enfin, si vous n'aviez pas compris, il faut utiliser la boucle For(. ;)
À vos calculatrices ! :pirate:

Correction

Si vous n'avez pas réussi, n'hésitez pas à relire le chapitre. Sinon, voici le
code, qui pouvait bien sûr être modulé (la pointe d'humour quand A est
inférieur à 0 n'était pas obligatoire :-°) :

:Input "NB DE GENS:",N

:If N>82:Disp 100

:If N<0:Disp "TRES DROLE ..."

:If N>=0 and N<83

:Then

:1->B

:For(F,1,N-1

:B(365-F)/365->B

:End

:round(100(1-B),2->B

:Disp B

:End

Télécharger le fichier .8xp à transférer sur votre calculatrice
(187 octets) (125 octets sur la calculatrice)
(http://sdz.serveftp.net/dl/shaac/TI/NAISSANC.8xp)

La partie la plus difficile était l'implémentation de la boucle For(. Pourtant,
en dépit d'une formule qui a bien la classe, il suffisait de bien lire la formule
pour voir que ça allait tout seul. ^^

https://www.sigmaths.net 65/109

Ça y est ! Le chapitre est fini, les boucles sont passées. Et pourtant,
j'espère que vous avez bien compris car vous allez très certainement
beaucoup les utiliser maintenant. Vous pouvez, grâce à elle, créer de
nombreux programmes intéressants.

Ordre de lecture du programme

Jusqu'ici la calculatrice interprétait le programme que vous écriviez
depuis le début jusqu'à la fin. De temps en temps elle relisait quelques
lignes lorsqu'il y avait des boucles. Mais globalement les instructions
étaient toutes lues dans l'ordre.

On va voir ici comment mettre un peu de discontinuité dans vos
programmes. :pirate:

Poser une étiquette

Pour permettre à votre machine de s'y repérer un peu mieux (et donc de
faire des choses plus avancées), on va pouvoir poser des étiquettes. Elles
agissent comme une sorte de balise en permettant à la machine d'aller
directement exécuter le code qui se trouve après elles.
On peut ainsi revenir en arrière (pour recommencer) ou tout simplement
sauter une grande partie de votre programme (cela peut être utile pour en
sortir).
Le nom de cette fonction est Lbl, qui est un diminutif pour "Label", elle se
trouve dans le menu CTL (raccourci

).
Afin de différencier les différents Lbl que vous posez, il faut ajouter 1 ou 2
chiffres/lettres à la suite.
Cela nous donne la syntaxe suivante : Lbl étiquette, comme par exemple
:

:Lbl A8
https://www.sigmaths.net 66/109

Cette combinaison nous permet pas moins de 1369 possibilités (10
chiffres + 26 lettres + thétha = 37, le tout au carré). Ainsi, dans des
programmes en général peu imposants, c'est énorme et amplement
suffisant, à moins que vous ne souhaitiez mettre 3 Lbl par ligne. :p

Maintenant que vous savez comment poser ces étiquettes, voyons
comment s'en servir !

Se rendre à une étiquette

La fonction Goto

La fonction Goto est la fonction la plus simple fonctionnant de pair avec Lbl
(ce n'est pas pour autant que les autres sont compliquées).
Vous trouverez la fonction Goto dans le menu CTL (raccourci

) et sa syntaxe est la même que pour Lbl : vous devez mettre 1 ou 2
lettres/chiffres à la suite du Goto : Goto étiquette.
Le fonctionnement est alors très simple, votre calculatrice ira au niveau du
Lbl de même identification. On pourrait donc avoir :

:Lbl A

:Disp"BOUCLE"

:Goto A

Il n'y a PAS de conflit entre variables et noms de labels. Vous pouvez
donc avoir le code suivant sans aucun souci :

:Lbl A

:6->A

https://www.sigmaths.net 67/109

Ici, la calculatrice ignorera la première ligne, exécutera la seconde (elle
affichera "BOUCLE") puis, en exécutant la dernière ligne, elle ira au Lbl A.
Comme vous l'aurez très certainement compris, ce petit exemple est
également un cas particulier puisqu'il agit comme une boucle.

L'un des intérêts de Lbl / Goto est de permettre de ré-exécuter une partie
d'un de vos programmes d'une manière plus souple qu'une boucle (pas de
balise End nécessaire).

Menu(, pour des programmes plus clairs

Lorsque vos programmes auront plusieurs fonctionnalités, il est probable
que vous vouliez permettre à l'utilisateur de pouvoir en sélectionner une
spécifiquement. Pour cela, le TI-Basic dispose d'une fonction toute prête,
Menu(, qui vous permet de créer des menus semblables à ceux déjà
présents dans la calculatrice (comme

).

Menu(s'utilise ainsi :

Menu("titre","texte1",étiquette1,"texte2",étiquette2, . . .)

Si votre Goto pointe vers un Lbl qui n'a pas été posé, vous aurez une
belle erreur.

Ne remplacez pas vos boucles par des Lbl / Goto, ce serait
BEAUCOUP plus lent !

https://www.sigmaths.net 68/109

Comme vous pouvez le voir, on commence par donner le titre du menu, il
s'agit de la ligne d'en-tête. Ensuite, vous pouvez donner des paires
d'arguments : d'abord le nom du sous-menu (une indication pour
l'utilisateur), puis le lien vers le Lbl souhaité (lien qui agira comme un
Goto).

Il faut alors bien comprendre que chaque sous-menu est lié à un Lbl
particulier.
Ainsi, lorsque l'utilisateur choisira un des sous-menu, la calculatrice lira le
code à partir de ce Lbl.

En résumé

Voici un schéma pour bien comprendre les redirections vers les Lbl.

Mise en garde

Un Goto ou un Menu(ne permet pas de sortir d'une boucle. Une boucle ne
se finira dans tous les cas que par un End. Cette règle s'applique
également pour un If ... Then.
Il faut donc faire très attention lorsque vous utilisez des Goto ou Menu(à
l'intérieur de blocs (boucles ou conditions).

Mettre le programme en pause

De temps en temps, la calculatrice va trop vite pour nous. En effet,
imaginons que je décide de faire un programme propre qui va nettoyer
l'écran avant de s'arrêter. À peine aura-t-il donné le résultat final que celui-

L'écran de votre calculatrice ne contenant que 8 lignes, vous êtes
limités à seulement 7 sous-menus (une ligne pour le titre). Si vous en
mettez plus, vous aurez une erreur.

https://www.sigmaths.net 69/109

ci s'effacera, et ce n'est pas ce que l'on recherche. Afin de remédier à ce
problème, il existe en TI-Basic une fonction capable de mettre en pause le
programme.

Cette fonction est... Pause, et c'est la 8e du menu CTL. Son utilisation est
très simple car elle ne prend aucun argument dans son utilisation
classique, il suffit de l'ajouter dans un programme pour qu'à l'exécution,
celui-ci se mette en pause jusqu'à ce que l'utilisateur appuie sur la touche
entrée.

Il existe également une seconde forme de Pause, qui accepte un
argument de la forme :
Pause [valeur]
Ici encore, c'est très simple : la valeur sera tout simplement affichée. Ainsi,
les deux codes suivants auront le même effet.

:Disp A

:Pause

:Pause A

Seulement, le second est un peu plus rapide, ;) et plus tard nous y verrons
un autre avantage.

Arrêter le programme avant la fin

Imaginons que, pour une quelconque raison, vous ayez besoin d'arrêter un
programme avant la fin.

Ce que vous pouvez déjà faire

Grâce à la partie précédente, vous pouvez désormais le faire, à l'aide
d'une petite astuce :

https://www.sigmaths.net 70/109

:Disp"CODE"

:Goto Q

:Disp"CODE IGNORE"

...

:Lbl Q

Ce code ira directement à la fin du programme et donc celui-ci s'arrêtera.
Cependant, il existe une solution plus facile, plus claire, plus rapide... tout
simplement meilleure.

La fonction Stop

Il s'agit de la fonction Stop qui se trouve dans le menu CTL (raccourci

).
Cette fonction est particulièrement simple : elle arrête tout simplement le
programme, définitivement.

La fonction Stop n'est cependant pas utile à la fin de votre programme. ;)

La fonction Return

La fonction Return a globalement le même effet que Stop. Mais elle a un
autre effet bien pratique : contrairement à Stop qui arrête dans tous les cas
le programme, Return va seulement arrêter le sous-programme en cours.

C'est une notion que nous n'avons pas encore abordée. Il s'agit d'un
programme que vous appelez depuis un autre programme. Tout comme
vous appelez un programme depuis le menu principal, vous pouvez en

Hein ?! o_O C'est quoi un sous-programme ?

https://www.sigmaths.net 71/109

appeler un depuis un programme, en écrivant :
:prgmNOM
Le programme appelé sera alors exécuté et une fois fini le programme
appelant continuera son exécution.

Return permet donc de quitter le programme appelé pour revenir tout de
suite au programme appelant. Toutes les boucles en cours seront quittées,
inutile donc de se préoccuper des boucles actuellement ouvertes. ;)

Vous savez maintenant bien maîtriser les bases du TI-basic. Nous allons
dans le prochain chapitre voir une notion bien particulière pour enchaîner
sur un gros TP pour faire un vrai et grand programme. Ensuite, nous
attaquerons des choses plus avancées.

Gérer l'appui sur les touches

Ce chapitre est un peu spécial : il est tout entier consacré à une seule
fonction ! o_O
Mais bon, elle le mérite, cette fonction ne permet pas moins de savoir
sur quelle touche l'utilisateur a appuyé à un moment du programme.
C'est très très utile lorsque l'on veut faire un jeu, ou autre programme à
interface développée.

Les numéros de touches

Comment la calculatrice gère-t-elle les touches ?

Il existe une autre manière de quitter un programme durant son
exécution. Pour cela, il faut appuyer sur la touche
. Cela a pour effet d'arrêter les calculs en cours et de vous indiquer
une belle ERR:BREAK mais c'est NORMAL. Si vous décidez de faire
"2:Goto", vous pourrez voir exactement où votre calculatrice s'est
arrêtée dans la lecture de votre programme.

https://www.sigmaths.net 72/109

La question que l'on peut se poser, c'est de savoir comment la calculatrice
va nous expliquer clairement quelle est cette touche enfoncée. En effet,
vous auriez pu voir au cours de ce tutoriel que pour vous expliquer sur
quelle touche appuyer, on doit utiliser des photos des touches. :o
Mais la calculatrice ne peut pas afficher de photos ; et de toute façon, ça
serait difficile de gérer une photo dans un programme.

Pour simplifier tout ça, chaque touche se voit attribuer un numéro. C'est
très pratique car on peut lui faire subir toutes sortes d'opérations (stocker
dans une variable).

L'attribution des numéros

Le numéro de chaque touche est défini comme ceci : (numéro de la ligne
de la touche)*10 + (numéro de la colone de la touche).

Plus concrètement, voici l'illustration livrée avec le manuel :

Comme vous l'avez peut-être remarqué, il n'y a pas de numéro pour la
touche
car cette touche arrête le programme en cours (revoyez le chapitre 2
(http://www.siteduzero.com/tutoriel-3-64722-1-tout-un-
programme.html#ss_part_3) pour plus de détails).

https://www.sigmaths.net 73/109

Récupérer le numéro de la touche pressée

Maintenant que l'on connaît les conventions d'appellation des touches, on
va s'intéresser à la récupération des touches.

Demander la touche pressée

Pour demander la touche pressée, on ne va utiliser ni Prompt ni Input,
mais une fonction créée exprès pour ça.
Il s'agit de getKey (

), ce qui signifie en gros « recevoir la clé », c'est-à-dire que l'on va
réceptionner la clé (c'est-à-dire le numéro) de la touche pressée.

Contrairement à Prompt ou Input, le programme ne s'arrêtera pas pour
attendre que l'on presse une touche. Il réceptionnera le code de la
dernière touche pressée depuis le lancement du programme. Faites
donc bien attention, il n'est pas rare qu'un programme ne marche pas
puisqu'il reçoit le code d'une touche pressée 5 minutes avant (mais depuis
le lancement du programme), et que l'on a totalement oublié.
Si aucune touche n'a été pressée depuis le lancement du programme ou
depuis le dernier getKey, la fonction renverra 0.

Plus concrètement, le code s'utilise généralement ainsi :

:getKey->K

On stocke donc le numéro de la touche pressée dans une variable. On a
plutôt l'habitude d'utiliser la variable K, comme Key. C'est une convention
qui permet de mieux nous y retrouver dans nos variables.
Ici, la variable K contiendra donc le code de la touche dernièrement
pressée. https://www.sigmaths.net 74/109

Traitement de la valeur reçue

Au départ cela peut être un peu difficile à comprendre, on veut savoir
quelle touche a été pressée et on se retrouve avec une variable contenant
un numéro. :waw: Mais il vous suffit tout simplement d'utiliser les
conditions pour utiliser cette valeur.

En général, chaque touche a une fonction précise dans un programme, on
compare donc souvent K aux différentes valeurs qui activent les
fonctionnalités.

Par exemple, si K vaut 23 (la touche

), on quitte le programme :

:If K=23

:Stop

Utilisations concrètes

Si vous êtes perspicaces, vous aurez compris que ce genre de fonctions
s'utilise presque exclusivement dans des boucles.
En effet, on veut généralement permettre à l'utilisateur de presser une
touche quand il le veut, et non pas seulement à l'unique moment où l'on a
mis le getKey.

L'embryon de la plupart des codes

Je vous conseille de bien vous familiariser avec cette structure car c'est en
quelque sorte les fondations pour gérer les codes touches :

C'est cool tout ça, mais j'en fais quoi de cette variable moi ? :euh:

https://www.sigmaths.net 75/109

:Repeat K

:getKey->K

:End

Comme vous pouvez le voir, on demande le code touche jusqu'à ce qu'il
vaille quelque chose.
La première réaction lorsque l'on voit ce code c'est de l'interpréter comme
ceci : « on attend que l'utilisateur appuie sur une touche, et une fois qu'il l'a
fait, on a le numéro de la touche stocké dans K ».
Eh bien c'est faux ! :diable:
Enfin, en partie ! L'idée générale est bonne mais vous oubliez quelque
chose de très important. En effet, rappelez-vous, getKey prend la valeur
de la dernière touche pressée. Donc si l'utilisateur a déjà appuyé sur une
touche depuis le lancement du programme, la boucle ne fera qu'un tour et
puis basta !

Donc, l'embryon de code que vous utiliserez le plus souvent sera plus
probablement celui-ci :

:getKey->K

:Repeat K

:getKey->K

:End

Du coup, à la première ligne, on fera en quelque sorte comme vider
l'historique. On stocke l'éventuelle touche déjà pressée plus tôt dans une
variable que l'on va écraser juste en dessous.
Et les prochains getKey renverront alors 0 jusqu'à ce qu'une nouvelle
touche soit pressée.

Application

https://www.sigmaths.net 76/109

On va ici voir comment utiliser notre embryon dans un programme. On va
créer un programme apprécié par beaucoup de personnes : un
programme qui renvoie le code touche d'une touche pressée.
Pourtant, si vous avez bien compris qu'une touche a comme numéro 10
fois sa ligne plus sa colonne, vous n'avez absolument pas besoin de ce
programme.

:Repeat K

:getKey->K

:End

:Disp K

C'était tout simple. On avait juste besoin d'un Disp pour afficher le code de
la touche. Notez qu'ici on n'a pas besoin de mettre de getKey en première
ligne puisque ce code est en début de programme, l'utilisateur n'a pas eu
le temps de presser de touche.

Autre méthode

L'embryon que je vous ai donné est bien si on veut attendre que l'on ait
une touche. Mais dans un programme qui tourne sans arrêt, le plus
souvent des jeux (comme Snake), on ne veut pas attendre, il faut que ça
avance ! :p

Par exemple, si l'on veut déplacer un 0 sur l'écran, avec sur la dernière
ligne un compteur qui s'incrémente à chaque tour de boucle, pour se
rendre compte du temps qui passe. ^^ On ne peut pas arrêter le
programme pour attendre qu'on presse une touche, sinon le compteur
s'arrêterait. Il faut donc utiliser le getKey dans la boucle globale du
programme.

On serait donc tenté de faire une boucle globale, où au début on
récupèrerait le code touche. Puis on confronterait cette valeur aux 4 codes
touches des 4 touches

https://www.sigmaths.net 77/109

,

,

et

avec 4 If pour appliquer les modifications nécessaires.
Mais plutôt que d'utiliser plein de If, on va rentrer les tests directement
dans les calculs de modification. Souvenez-vous qu'un test de
comparaison renvoie en 1 ou 0, suivant s'il est vrai ou faux. Nous allons
donc incorporer cette valeur de 0 ou de 1 dans nos calculs :

:ClrHome

:1->A:1->B:0->C

:While 1

:getKey->K

:Output(A,B," ")

:A+(K=34)-(K=25)->A

:B+(K=26)-(K=24)->B

:Output(A,B,0)

C+1->C

:Output(8,1,C)

:End

Évidemment, si l'on veut que le code soit utilisable, il faut empêcher que
l'on puisse sortir de l'écran ou que l'on rentre dans le compteur. Pour des
raisons de simplicité, nous allons interdire toute la ligne du compteur,
comme ça vous pourrez le faire tourner très longtemps (:p) :

https://www.sigmaths.net 78/109

:ClrHome

:1->A:1->B:0->C

:While 1

:getKey->K

:Output(A,B," ")

:A+(K=34 and A<7)-(K=25 and A>1)->A

:B+(K=26 and B<16)-(K=24 and B>1)->B

:Output(A,B,0)

:C+1->C

:Output(8,1,C)

:End

Le mot de la fin

Il arrive souvent que dans un cas comme le précédant, on veuille que la
boucle s'interrompe lorsqu'une certaine touche est pressée. Pour cela il
suffit simplement d'adapter la condition lors de la formulation de la boucle.
Ainsi, dans notre exemple précédent, si l'on veut arrêter lorsque

a été pressé, il faudra faire comme suit.

:ClrHome

:1->A:1->B:0->C

:Repeat K=105

:getKey->K

:Output(A,B," ")

:A+(K=34 and A<7)-(K=25 and A>1)->A

:B+(K=26 and B<16)-(K=24 and B>1)->B

:Output(A,B,0)

:C+1->C

:Output(8,1,C)

:End

https://www.sigmaths.net 79/109

À travers l'explication illustrée de cette fonction, vous devriez maintenant
bien savoir la manipuler.
Rassemblez vos esprits car nous allons maintenant voir comment créer un
programme. Un vrai, un grand, un beau. ^^

TP : Créer son premier jeu

Après avoir ingurgité tous ces chapitres, il est temps de mettre toutes
vos connaissances en pratique pour créer un programme (un gros, pas
un tout petit comme on en avait l'habitude).

Et quoi de plus plaisant comme programme qu'un jeu auquel vous
pourrez jouer pendant les cours récréations ? :ange:

Nous allons ici créer un jeu de réflexes, où le but sera d'appuyer sur la
touche demandée le plus vite possible.

Le cahier des charges

Je vais ici vous dire comment le programme doit fonctionner, et à quoi il
devra ressembler à la fin.

Présentation du jeu

Il s'agit d'un jeu où une grille (type morpion) est affichée sur l'écran.
Chaque case de la grille correspond à une touche de la calculatrice.
Un marqueur va alors apparaitre dans une case de la grille. En un certain
laps de temps, il va falloir appuyer sur la touche correspondante.
Si on n'appuie pas sur la touche assez vite, on a perdu, :(sinon un
nouveau marqueur apparait.

Le graphisme

La grille
https://www.sigmaths.net 80/109

Il doit s'agir d'une grille de 3*3 cases, chacune faisant 4 de largeur et 2 de
hauteur. Voici à quoi elle doit ressembler :

Les lignes horizontales ont été faites avec des moins, les verticales avec
des I, et les intersections avec des plus.

Les marqueurs

Les marqueurs doivent remplir entièrement la case, comme ceci :

Le marqueur a été fait avec des X.

Les capacités du jeu

Au démarrage, on doit avoir un écran de présentation.
Le jeu doit ensuite nous proposer entre le niveau facile, moyen ou difficile.
Ensuite, la grille s'affiche avec le marqueur.
Les touches doivent êtres associées aux cases de la grille ainsi :

https://www.sigmaths.net 81/109

Si l'on appuie sur la bonne touche à temps, le marqueur doit disparaitre et
être aussitôt remplacé par un autre.
Sinon, l'écran s'efface et on nous indique notre nombre de points (nombre
de marqueurs qu'on a réussi à faire disparaitre).

Quelques indices pour procéder

Vu que c'est votre premier programme, je vais beaucoup vous aider. ;)

L'écran de présentation

Bon ça ne devrait pas être trop dur, il vous suffit d'effacer l'écran, de noter
le nom du programme, du programmateur, de la version éventuellement si
vous voulez modifier le programme plus tard. Bref, vous présentez le
programme.
Vous faites une belle mise en page, et vous attendez que l'utilisateur
appuie sur

pour continuer.

Le niveau

Pour choisir le niveau, faites un menu.
Ce menu amènera vers des étiquettes qui stockeront le niveau dans une
variable.
Cette variable nous sera utile plus tard pour déterminer la durée pendant
laquelle il faut presser la touche.

Afficher la grille

https://www.sigmaths.net 82/109

Pour afficher la grille, évitez de le faire ligne par ligne, ça serait beaucoup
trop fatiguant et ça prendrait beaucoup plus de place que nécessaire.
Faites donc deux boucles : une pour tracer les droites horizontales, et une
pour les verticales. Faites ensuite 4 Output pour les 4 intersections.

Placer le marqueur

Détermination de la case

Il vous faut d'abord déterminer dans quelle case le marqueur va
apparaître. Pour cela, vous allez avoir besoin d'une fonction que l'on n'a
pas encore vu : randInt (ce qui signifie entier aléatoire). Pour aller la
chercher, faites

.
Cette fonction s'utilise ainsi : randInt(valeur minimale, valeur maximale).

Stockez donc un nombre aléatoire entre 1 et 9 dans une variable.
Et ensuite, pour chaque valeur de cette variable, associez une case.
Pour ce faire, créez 2 variables qui stockeront les coordonnées de l'origine
de la case souhaitée.
L'origine d'une case étant définie comme ceci :

Pensez bien à effacer l'écran avant.

https://www.sigmaths.net 83/109

Afficher le marqueur

Maintenant que vous avez les coordonnées de l'origine, et puique vous
connaissez les dimensions d'une case, vous pouvez facilement la remplir
de X.

Attendre un certain temps que l'utilisateur presse une
touche

Vous vous souvenez de l'embryon de code très utilisé que l'on a vu au
chapitre précédent ? Celui avec une boucle qui tournait jusqu'à ce que le
code touche vaille quelque chose.
Eh bien ici, vous allez réutiliser le même principe mais en faisant en sorte
que la boucle (qui ne sera pas forcément une boucle Repeat) ne tourne
qu'un certain nombre de fois, ce nombre dépendant de la facilité du
niveau. Ici on joue sur le fait que le TI-basic est lent, ce qui laisse le temps
au joueur en une centaine de tours de boucle d'avoir appuyé sur la touche.

Déterminer si la touche pressée est la bonne

Si l'utilisateur a pressé une des touches demandées, associez à cette
touches un numéro en 1 et 9 (faites l'inverse de ce que vous aviez fait
avec le nombre aléatoire).
Puis comparez ce numéro avec le nombre tiré aléatoirement, afin de
déterminer si la bonne touche a été pressée.

Astuce : on peux imbriquer une boucle dans une autre. ;)

Tant qu'à faire, n'interrompez pas la boucle quand l'utilisateur appuie
sur une touche, ça lui permet de se reprendre en cas d'erreur. ;)

https://www.sigmaths.net 84/109

Si la bonne touche est pressée

SI l'utilisateur a pressé la bonne touche, il vous faut effacer le marqueur.

Ensuite, il vous faut revenir à l'étape de détermination de l'emplacement
du marqueur. Englobez donc toute cette partie du programme dans une
boucle infinie.

Si l'utilisateur a échoué

Si l'utilisateur à perdu, :diable: il faut le sortir de la boucle. Utilisez les
étiquettes pour ça.
Vous devez ensuite effacer l'écran, et afficher le score que vous aurez
pensé à incrémenter dans une variable à chaque tour de la boucle infinie.

Au boulot !

Bon ben maintenant c'est à vous. :-°

Correction

N'utilisez pas de ClrHome, il faut faudrait alors re-dessiner la grille, ce
qui ralentirait considérablement votre programme. Faites plutôt
exactement comme vous aviez fait pour afficher le marqueur, mais en
affichant des " " au lieu de "X".

Si vous n'avez pas réussi à finir le programme, ce n'est pas grave.
L'important c'est d'avoir essayé, et de comprendre la correction. Peu
d'entre vous risquent de réussir le programme tous seuls.
Et ne paniquez pas en vous disant que vous n'auriez jamais trouvé
tout ça tous seuls, ça viendra avec le temps. :)

https://www.sigmaths.net 85/109

Je vais ici vous détailler la création du programme étape par étape, pour
que vous puissiez bien suivre.
Je suppose que vous avez au moins déjà créé un programme, j'ai appelé
le mien REFLEXE.

L'écran de présentation

Voici ce que nous allons faire (ce n'est qu'un exemple) :

effacer l'écran ;

mettre le nom du programme en haut et centré ;

deux lignes en dessous, afficher la version du programe (ici 1.0) ;

encore deux lignes en dessous, toujours centré, votre nom ;

on saute une ligne et on indique que le programme est tiré d'un tuto ;

sur la dernière ligne, on va écrire l'adresse du Site du Zér0, pour
montrer d'où vous tirez votre programme ;

mettre le programme sur pause.

Ce qui donne donc :

:ClrHome

:Output(1,2,"JEU : REFLEXE")

:Output(3,7,"V1.0")

:Output(5,4,"PAR SHAAC")

:Output(8,2,"SITEDUZERO.COM")

:Pause

Bien sûr, remplacez Shaac par votre nom. ^^
https://www.sigmaths.net 86/109

Le niveau

On va utiliser un menu à 3 options, qui va nous emmener à l'étiquette 1, 2
ou 3 selon le niveau choisi.

:Menu("QUEL NIVEAU ?","FACILE",1,"MOYEN",2,"DIFFICILE",3)

Maintenant les étiquettes :

:Lbl 1

:1->N

:Lbl 2

:2->N

:Lbl 3

:3->N

Il faut donc faire ceci :

:Lbl 1

:1->N

:Goto 4

:Lbl 2

:2->N

:Goto 4

:Lbl 3

:3->N

:Lbl 4

Comme ça le programme lit l'instruction du niveau choisis, puis saute
directement vers la suite du programme.

Le problème de ce code, c'est que si on choisit le niveau 1, le
programme va lire l'instruction pour ce niveau, mais il va aussi lire les
instructions des autres niveaux.

https://www.sigmaths.net 87/109

Afficher la grille

Il suffit d'appliquer le conseil que je vous ai donné plus haut :

:ClrHome

:For(F,2,15)

:Output(3,F,"-")

:Output(6,F,"-")

:End

:For(F,1,8)

:Output(F,6,"I")

:Output(F,11,"I")

:End

:Output(3,6,"+")

:Output(3,11,"+")

:Output(6,6,"+")

:Output(6,11,"+")

Placer le marqueur

Détermination de la case

On va stocker le nombre aléatoire dans A. Et les coordonnées de l'origine
de la case dans X et Y, comme pour un repère. Voici un schéma pour bien
comprendre :

Voici le code :

https://www.sigmaths.net 88/109

:randInt(1,9)->A

:If A=<3

:1->Y

:If A>3 and A<=6

:4->Y

:If A>6

:7->Y

:If A=1 or A=4 or A=7

:2->X

:If A=2 or A=5 or A=8

:7->X

:If A=3 or A=6 or A=9

:12->X

Bon comme ça, ça peut paraitre un peu lourd toutes ces conditions. Il y a
moyen d'en mettre 3 fois moins en réfléchissant à un algorithme, mais ça
compliquerait trop pour le moment. ;)

Afficher le marqueur

Comme je vous l'ai dit, on fait une boucle imbriquée dans une autre :

:For(F,0,1)

:For(G,0,3)

:Output(Y+F,X+G,"X")

:End:End

Prenez l'habitude de fermer vos boucles sur la même ligne en cas de
boucles imbriquées comme ici.

Attendre un certain temps que l'utilisateur presse une
touche

https://www.sigmaths.net 89/109

Comme je vous l'ai conseillé, on va reprendre l'embryon du chapitre
précédent.

:Repeat K

:getKey->K

:End

Mais cette boucle tournera jusqu'à ce que l'on appuie sur une touche.
L'utilisateur a donc tout son temps, ce n'est pas ce que l'on veut. On va
donc limiter le nombre de tours de boucle. Et quelle est la boucle qui
tourne un nombre de tours prédéfini ? C'est For(! Il ne nous reste plus
qu'à écrire la valeur d'arrivée en fonction de N. Ici j'ai pris 100/N, ça me
paraissait un bon timing pour les différents niveaux.

:For(F,1,100/N)

:getKey->K

:End

Cependant, il reste un dernier problème : une fois que l'utilisateur aura
pressé sa touche, la boucle va redemander la valeur de getKey, qui vaudra
alors 0. C'est plutôt problématique. Comme il n'existe pas de touche dont
le code vaut 0, on ne va stocker le code touche dans K que s'il est différent
de 0.

:For(F,1,100/N)

:getKey->G

:If G!=0

:G->K

:End

Déterminer si la touche pressée est la bonne

Ici, c'est une partie un petit peu bourrin, mais c'est un passage forcé.
Heureusement il n'y a rien de bien difficile ici.

https://www.sigmaths.net 90/109

:If K=72

:1->B

:If K=73

:2->B

:If K=74

:3->B

:If K=82

:4->B

:If K=83

:5->B

:If K=84

:6->B

:If K=92

:7->B

:If K=93

:8->B

:If K=94

:9->B

Hop ! Plus qu'un test d'égalité entre A et B et l'affaire est pliée. :)
Nous ferons ce test un peu plus tard, pour le moment on va supposer que
l'utilisateur a pressé la bonne touche.

Si la bonne touche est pressée

Pour l'instant on suppose que c'est le cas, on omettra ces instructions
dans le cas contraire plus tard.
On cherche donc à effacer le curseur, on reprend donc le code qui affichait
des "X", et on fait afficher des " " à la place, comme ça on verra un
caractère vide à la place des "X", c'est-à-dire qu'on ne verra plus rien, :p le
curseur sera effacé !

https://www.sigmaths.net 91/109

:For(F,0,1)

:For(G,0,3)

:Output(Y+F,X+G," ")

:End:End

Gestion de la boucle

Il va falloir mettre en place une boucle qui tourne jusqu'à ce que l'on ait
perdu. Il faut donc que la boucle démarre après l'affichage de la grille mais
avant la sélection du marqueur. Placez donc ceci juste avant le randInt :
:While 1 .

Puis, à la fin du code, mettez un End pour fermer cette boucle.

Les points

Maintenant qu'on a une belle boucle, on va pouvoir compter les points. :)
On va les stocker dans la variable P.
Tout d'abord on initialise la variable avant le début de la boucle (:0->P).
Ensuite, à la fin de chaque tour de jeu (avant d'effacer le marqueur par
exemple), on incrémentera ce nombre de points :P+1->P .

La gestion de la fin de jeu

Maintenant on part du principe que l'on a perdu. :'(
Il va donc falloir quitter la boucle infinie du jeu. Avant d'incrémenter les
poins, faites donc ceci :

:If A!=B

:Goto 0

Ainsi, si la touche appuyée ne correspond pas à la position du curseur, on
va au Lbl 0, que l'on placera après la boucle.

https://www.sigmaths.net 92/109

La fin du programme

C'est presque terminé ! :)
À la fin de la boucle ajoutez ceci :

:Lbl 0

:ClrHome

:Disp "NOMBRE DE PTS :",P

:Pause

:Menu("CONTINUER ?","OUI",5,"NON",6)

:Lbl 6

À la fin du jeu, l'utilisateur aura alors le choix de recommencer s'il le
désire.
Il faut ne pas oublier d'ajouter un Lbl 5 après le code de l'écran de
présentation du programme.

Le code

Il est possible que vous ayez eu du mal à suivre, surtout sur la fin, voici
donc le code en entier :

https://www.sigmaths.net 93/109

:ClrHome

:Output(1,2,"JEU : REFLEXE")

:Output(3,7,"V1.0")

:Output(5,5,"PAR SHAAC")

:Output(8,2,"SITEDUZERO.COM")

:Pause

:Lbl 5

:Menu("QUEL NIVEAU ?","FACILE",1,"MOYEN",2,"DIFFICILE",3)

:Lbl 1

:1->N

:Goto 4

:Lbl 2

:2->N

:Goto 4

:Lbl 3

:3->N

:Lbl 4

:ClrHome

:For(F,2,15)

:Output(3,F,"-")

:Output(6,F,"-")

:End

:For(F,1,8)

:Output(F,6,"I")

:Output(F,11,"I")

:End

:Output(3,6,"+")

:Output(3,11,"+")

:Output(6,6,"+")

:Output(6,11,"+")

:0->P

:While 1

:randInt(1,9)->A

:If A<=3

:1->Y
https://www.sigmaths.net 94/109

:If A>3 and A<=6

:4->Y

:If A>6

:7->Y

:If A=1 or A=4 or A=7

:2->X

:If A=2 or A=5 or A=8

:7->X

:If A=3 or A=6 or A=9

:12->X

:For(F,0,1)

:For(G,0,3)

:Output(Y+F,X+G,"X")

:End:End

:For(F,1,100/N)

:getKey->G

:If G!=0

:G->K

:End

:If K=72

:1->B

:If K=73

:2->B

:If K=74

:3->B

:If K=82

:4->B

:If K=83

:5->B

:If K=84

:6->B

:If K=92

:7->B

:If K=93

:8->B

https://www.sigmaths.net 95/109

:If K=94

:9->B

:If A!=B

:Goto 0

:P+1->P

:For(F,0,1)

:For(G,0,3)

:Output(Y+F,X+G," ")

:End:End

:End

:Lbl 0

:ClrHome

:Disp "NOMBRE DE PTS :",P

:Pause

:Menu("CONTINUER ?","OUI",5,"NON",6)

:Lbl 6

Télécharger le fichier .8xp à transférer sur votre calculatrice
(489 octets) (647 octets sur la calculatrice)
(http://sdz.serveftp.net/dl/shaac/TI/REFLEXE.8xp)

Pfiou c'est enfin terminé ! :)
Vous avez maintenant un vrai programme fonctionnel ! Vous pouvez
cependant l'améliorer en ajoutant des niveaux de difficulté par exemple ;
ça ne pourra que vous entraîner.

Vous pouvez maintenant prendre une petite pause, vous avez fini
d'apprendre les bases du TI-basic ! :soleil:

Vous avez maintenant un aperçu de la programmation sur TI. ;)

Les fonctions en français

Si vous possèdez une TI-82 stats.fr, vous allez devez avoir du mal à
vous repérer dans ce tutoriel, car la majorité des fonctions de votre
calculette sont traduites en français. o_O Pour vous aider à vous

https://www.sigmaths.net 96/109

repérer, voici un tableau donnant l'équivalent français de chaque
fontion disponible sur la TI-83 plus.

Bien utiliser le tableau

La tableau est composé de quatre colones :

La première contient la fonction telle qu'elle est donnée dans le tutoriel,
c'est à dire telle qu'elle est par défaut sur la 83 plus ;

La deuxième contient la fonction en français, c'est à dire telle qu'elle
apparait sur la 82 Stats.fr. Pour une meilleure visualisation du tableau,
cette fonction est en verte si elle est identique à l'anglaise et en rouge si
elle est complètement différente (vous n'y arriverez pas avec une
simple traduction) ou si elle prête à confusion avec une autre fonction
anglaise ;

La troisième vous indique comment aller chercher cette fonction dans
votre calculette quand vous écrivez un programme ;

Et la dernière vous donne les endroits du cours où ces fonctions sont
expliquées.

Le tableau de traduction

Si vous possèdez une TI-82 Stats.fr, considérez le bouton
comme le bouton "matrice" (2ème bouton de la quatrième ligne).

Ce tableau est loin d'être complet, mais il est déjà bien avancé, ne
prêtez pas attention aux quelques trous dans certaines cellules. Le
tableau est cependant assez avancé pour vous permettre de suivre le
tutoriel.

https://www.sigmaths.net 97/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

a+b\iota
a+b\color{green}
{\iota} 6X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

abs(abs(-

ClrHome EffEcran

Afficher du texte
(http://sdz.tdct.org/sdz/tutoriel-
3-64723-afficher-du-
texte.html#ss_part_4)

ClrTable ClrTable -

Connected Relié
4X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

>Dec >Déc -

https://www.sigmaths.net 98/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Degree Degré
2X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

DelVar EffVar -

Disp Disp

Afficher du texte
(http://sdz.tdct.org/sdz/tutoriel-
3-64723-afficher-du-
texte.html#ss_part_2)

DispGraph AffGraph -

DispTable AffTable -

Dot NonRelié
4X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

DS<(DS<(
Les conditions
(http://sdz.tdct.org/sdz/tutoriel-
3-64833-les-conditions.html)

https://www.sigmaths.net 99/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Else Else
Les conditions
(http://sdz.tdct.org/sdz/tutoriel-
3-64833-les-conditions.html)

End End

Les conditions
(http://sdz.tdct.org/sdz/tutoriel-
3-64833-les-conditions.html)
Les boucles
(http://sdz.tdct.org/sdz/tutoriel-
3-64843-les-boucles.html)

Eng Ing
2X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Float Flott (Flottant)

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

fMax(xfMax(-

fMin(xfMin(-

fnInt(fonctIntégr(-
https://www.sigmaths.net 100/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

fPart(partDéc(-

>Frac >Frac -

For(For(
Les boucles
(http://sdz.tdct.org/sdz/tutoriel-
3-64843-les-boucles.html)

Full Plein (PleinEcr)
7X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Func Fct (Fonct)
3X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Function... Fonction... - -

G-T G-T 7X

2X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

https://www.sigmaths.net 101/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

gcd(pgcd(-

GDB... BDG... - -

Get(Capt(-

GetCalc CaptVar -

getKey codeTouche

Gérer l'appui sur les touches
(http://sdz.tdct.org/sdz/tutoriel-
3-64858-gerer-l-appui-sur-les-
touches.html)

Goto Goto

Ordre de lecture du
programme
(http://sdz.tdct.org/sdz/tutoriel-
3-64850-ordre-de-lecture-du-
programme.html)

Graphstyle(GraphStyle(-

Horiz Horiz
7X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

https://www.sigmaths.net 102/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

If If
Les conditions
(http://sdz.tdct.org/sdz/tutoriel-
3-64833-les-conditions.html)

Input Input

Gérer les variables
(http://sdz.tdct.org/sdz/tutoriel-
3-64724-gerer-les-
variables.html)

iPart(ent(-

IS>(IS>(
Les conditions
(http://sdz.tdct.org/sdz/tutoriel-
3-64833-les-conditions.html)

int(partEnt(-

Lbl Lbl

Ordre de lecture du
programme
(http://sdz.tdct.org/sdz/tutoriel-
3-64850-ordre-de-lecture-du-
programme.html)

lcm(ppcm(-

max(max(-

https://www.sigmaths.net 103/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Menu(Menu(

Ordre de lecture du
programme
(http://sdz.tdct.org/sdz/tutoriel-
3-64850-ordre-de-lecture-du-
programme.html)

min(min(-

nDeriv(nbreDérivé(-

Normal Normal

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

On/Off... On/Off... - -

Output(Output(

Afficher du texte
(http://sdz.tdct.org/sdz/tutoriel-
3-64723-afficher-du-
texte.html#ss_part_3)

Par (Param) Par (Param)
3X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

https://www.sigmaths.net 104/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Parametric... Paramétrique... - -

Pause Pause

Ordre de lecture du
programme
(http://sdz.tdct.org/sdz/tutoriel-
3-64850-ordre-de-lecture-du-
programme.html)

Picture... Image... - -

prgm prgm -

Pol (Polar) Pol (Polaire) 3X

2X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Polar... Polaire... - -

Prompt Prompt

Gérer les variables
(http://sdz.tdct.org/sdz/tutoriel-
3-64724-gerer-les-
variables.html)

https://www.sigmaths.net 105/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Radian Radian
2X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

re^ heta\iota
re^\color{green}{
heta\iota}

6X

2X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Real Réel
6X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Repeat Repeat
Les boucles
(http://sdz.tdct.org/sdz/tutoriel-
3-64843-les-boucles.html)

https://www.sigmaths.net 106/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Return Return

Ordre de lecture du
programme
(http://sdz.tdct.org/sdz/tutoriel-
3-64850-ordre-de-lecture-du-
programme.html)

round(arrondi(-

Sci Sci

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Send(Envoi(-

Seq Suit (Suite) 3X

3X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

https://www.sigmaths.net 107/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

Sequential Séquentiel
5X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

Simul Simul
5X

Introduction dans l'univers
Texas Intruments
(http://sdz.tdct.org/sdz/tutoriel-
3-64347-introduction-dans-l-
univers-texas-
intruments.html#ss_part_3)

solve(résoudre(-

Solver... Solveur... (hors
édition
prgm)

-

Statistics... Statistiques... - -

Stop Stop

Ordre de lecture du
programme
(http://sdz.tdct.org/sdz/tutoriel-
3-64850-ordre-de-lecture-du-
programme.html)

https://www.sigmaths.net 108/109

Sur la TI-83
plus

Sur la TI-82
Stats.fr

Comment
y accéder
?

Où en parle-t-on dans le
tuto ?

String... Chaîne... - -

Table... Table... - -

Then Then -

While While
Les boucles
(http://sdz.tdct.org/sdz/tutoriel-
3-64843-les-boucles.html)

Window... Fenêtre... - -

Zoom... Zoom... - -

x? x? -

3 3 -

3?(3?(-

Maintenant les fonctions en français ne vous poseront plus de problèmes.
:)

https://www.sigmaths.net 109/109

